

SUPPLEMENTARY NOTES

KEY WORDS (Condinu on reverse aldo il necessary and identity by block number)
Underwater explosions
Wave making
Explosion bubble containment
Explosion bubble blowout

This paper is a historical account of wave making experiments made inning ant immandiatoly after World War II, from the smallest to the Tryst code including the Atom Baker Bikini. The various theories of explosive wave making are discussed and comparisons are mate Germen tho observations and the theoretical expectations. Scaling laws ono cxaminoi for the two distinct cases: explosion bubble containment (sep case) and explosion bubble blowout (shallow ease).

OD FORM
1473
potion of in dove is obsolete
UNCLASSTHTET
\therefore Ann 2-ni4-8501

$$
591506
$$

 a factor of two with regar to wow amplital an within a few procont with rofme to waye prioi. The number ni weriments which are sirectly amplicablo to the contions impose: by thoury is limite ? Throry in some cases assumos the presence of a rifi betom, ant in other cares no boitom at all; whores in most arriments non fifit bottom ic
 mpirien moserption by which oxmosively funcatra waves may be prolictor.

Th. conchsions aro not inconctatent with loter worm in this fiat lon in the last inco i.

TABIE OF CONTENTS

Page

Foreword 1
Chronology 6
I TESTS AT SOLOMONS, Maryland (1944) 8

1. Introduction. 8
2. Site 9
3. Experimental Arrangement 9
4. Shot 1 20
5. Camera Arrangement and Details 13
6. Distances 18
7. Wavelength vs. Velocity (aerial data) 21
8. Wavelength vs. Velocity (surface data) 26
9. Addendun (1976) 29
10. Comparison of Surface and Bottom Measurements 37
11. Summary of Data 45
II DISCUSSION OF THEORY
12. Historical Introduction 48
13. General Considerations 49
14. Cauchy, Poisson, and the Explosion Problem. 51
15. Penney's Crater Assumption. 56
16. Kirkwood's Basic Theory 58
17. Influence of Bubble Perind. $6 ?$
18. Arrival Times F
19. Comparison of Theory with Experiment 67
20. Remarks on Scaling and the Influence of the Bottom 74
III ANALYSIS OF SOLOMONS' DATA
21. Bottom Pressure (norblowout case) ©
22. Spitzer's Formula For Moderate Charges 86
23. Bottom Pressure (blowout case); Other Estimates of Volume 87
24. The Duration of the First Negative Phase 91
25. Surface Amplitudes, Trougin and Succeeding Crest(blowout cases)97
IV THE BAKER SHOT AT BIKINI
26. Introduction. 102
27. Penney's Bore Theory 103
28. An Energy Argument 106
29. Baker Data and High Explosive Scaling 108
30. A Speculative Adjustment to Make Scaling Applicable 111
31. Use of Kirkwood and Seeger's theory To Make
Adjustments 116
32. The Cavity at Baker. 118
33. Other Baker Predictions 120
v CONCluSIONS
34. Data Summary 121
35. Kirkwood anc Seeger Summary 126
36. Scaling 128
Impulsive 129
Bore 130
Deep 131
Blowout. 132
37. Energy Consideration for Deep or Shallow Scaling 134
38. Prediction of Waves 135
39. Correction Factor 138
40. Estimate for the Critical Depth Case for a
Large Explosion 140
41. Ocean Inpact of an Asteroid 142
REFERENCES 145
DISTRIBUTION LIST 160
APPENDIX A - Gravity Waves in Cylindrical Coordinates 147
APPENDIX b - Energy in Waves. 151
APPENDIX C - Dispersive Medium, Yes or No? 156
APPENDIX D - Maximum and Minimum Values of G and Durations on the Bottom as a Function of τ ' 158

ILLUSTRATIONS

Figure

Title

Page
1 Prints of Aerial Photos on Shot 1 14
2 Time-Distance Plot for Troughs A, B, C of Shot 2 22
3 Print of Aerial Photo Shot 2, 34 Seconds after Explosion with Reproduction of Hydrophone Record at Pole 12 24
4
Surface Amplitudes Compared with Bottom Pressures, Shot 2 27
5
Surface Waves: Wavelength vs. Period for Various Depths 31
6 Prints of Aerial Photos On Shot 2 33
7 Hydrophone Records at Solomons 40
8 Comparison of Surface and Bottom Waves, Shot 4 42
9 Reduction of Pressure Fluctuation with Depth 44
10 Surface Wave $G_{0}\left(10,1, t^{\prime}\right)$ vs. t^{\prime} 63
11 Reduced Time of Arrival of Crests and Trough 66
12 Comparison of Theory with Charlesworth's Data 70
13 Bottom Pressure vs. Distance (Solomons) 82
14 Extremes of G_{0} at the Bottom 83
15 Maximum Bubble Radius Equal to Depth 92
16 Duration of First Suction vs. Distance. 94
17 Scaled Duration of First Negative Phase 95
18 Surface Amplitude vs. Distance 98
19
Extremes of G_{0} at the Surface 99
Surface Wave Däta Sumary scaled to Baker 124
21
Bubble Radius vs. Depth. 137
22
Correction Factor vs. $\frac{D}{L}$. 139
TABLES
Table Title Page
1 Charge Schedule and Details 11
2 Camera Details 19
3 Distances 20
4 Wavelengths and velocities, Shot 2 28
5
Surface and Bottom Amplitudes, Shot 2 39
6 Data Summary: Amplitudes and Periods 46
7 Pressure on the Bottom, Hydrophone Data. 88
8 Surface Amplitudes from Pole Photography 101
9 High Explosive Results Scaled to Baker 110
10 Wave Height x Distance, Solomons 122
11 Data Summary: Wave Height x Distance, All Shots 123

NTIS DISCLAIMER

* This document has been reproduced from the very best copy that was furnished by the Source Agency. Although NTIS realizes that parts of this document may be illegible, it is being released in order to make available as much information as possible.

WAVE MAKING BY AN UNDERWATER EXPLOSION

Foreword

Chapter I of this report was written in October 1944. The data had been analyzed and the results had joined the list of possible countermeasures for use against the newly deployed German pressure mine. However, the experiments and their results were not published, partly because they were not very useful for sweeping pressure mines, and partly because of the constraints of security at the time and the demands of other work. During a trip to England in late August 1944 to discuss the results of the experiments with Admiralty officials, J. G. Kirkwood, who was a member of the party, put to paper his general theory of explosion wave making, and this was first published in the British Undex series as No. 94 under the title "Memorandum on the Generation of Surface Waves by an Underwater Explosion." This theory was immediately used for the analysis of the experimental results obtained in the Bureau of Ordnance tests which had been conducted at Solomons, Maryland, in early August, and in later tests conducted by the Underwater Explosion Research Laboratory, at Woods Hole, Massachusetts. The theory, containing numerical evaluations of the necessary integrals made by the Mathematics Tables Project under the Applied Mathematics
panel of the NDHC, and certain suggestions made by R. J. Finkelstein, J. von Neumann, and F. J. Weyl of the Bureau of Ordnance Research Group on the theory of explosions, was submitted to the Compendium of British and American Reports on Underwater Explosion Research in 1947. The same article minus the tables was published in the Journal of Applied Physics Vol. 19, 346-360, April 1948 under the title "Surface Waves from an Underwater Explosion" by J. G. Kirkwood and R. J. Seeger.

The purpose of the present report is to describe the results obtained in those early experiments which represented a considerable effort and which would be difficult to repeat. It is also of Enterest that questions concerning the size of waves made by large explosions have arisen from time to time, an early example being in the Crossroads Baker shot at Bikini in August 1946. The results herein reported were of use in the planning for Baker although the data were not originally obtained for that purpose. The production of waves by explosions and their effects in harbours or ports will doubtless continue to be a matter of tactical or strategic interest. The British researclies reported in the UER Compendium Volume II, dated early in 1945, were designed in part to calculate or predict the wave effects following the explosion of a ship-load of munitions.

In this report I have used the draft essentially as originally written for the description of the Solomons experiments and results
(i.e., Chapter I). The discussions of other early experimental data, and of the various early theories and scaling laws have been added. I have only recently seen some of the work done by Tetra Tech, Incorporated and by Scripps Institution of Oceanography described in the "Handbook of Explosion-Generated Waves" TC-130, Oct 1968. I believe that the data given in the present report may be useful though belated addition to their worl in the shallow water regime.

In those urgent days of world War II it goes without saying that the Bureau of Ordnance had the advice and counsel of many distinguished men. A meeting was called on 14 August 1944 to discuss the results of the wave making work done up to that time for possible use in mine sweeping. I have a draft memo of that date entitled "Tentative Conclusions" which notes that the optimum charge weight would be such that the depth of water is approximately ten times the radius of the charge, this being roughly the equilibrium bubble radius; that larger charges than that are wasteful: that experiments on large charges indicate that distance has more effect on period than does weight; that the effect of weight if any is maskec by errors; that the effect of depth is uncertain. Appended to the memo in longhand is the notation; Present: Brunauer (Commander S.), E. B. Wilson, J. von Neumann, J. G. Kirkwood, J. Keithly, J. Bardine, p. M. Fye, and G. K. Hartmann.

There were many others who participated in tisis effort: Erom NOL (hydrophones and photography); from DTMB (photography); from the Applied Explosives Group, Buord; from NMWTS Solonons, and other segments of the Navy; and from UERL, Woods Hole. Their contributions, although perhaps forgotten by them, may, we hope, be recalled by this belated account and this belated expression of appreciation.

With regard to this current report. I would like to express appreciation and thanks to several at the Naval Surface Weapons Center for their help: to Dr. W. C. Wineland for agreeing to publish the report, to Drs. George Hudson, Joel Rogers and George Young for corrections and helpful suggestions, and to Grace Couldren for administrative assistance, ana to the Center generally for placing its splendid resources in illustrations and typing at the disposal of this work.

The urgency of these experiments made it impossible to plan them in such a manner that subsequent tests could profit from information learned in earlier tests. It is only in the light of later insights (and in this case much later) that a reasonably unified view o these complex phenomena has been achieved. We must also remember that in this practical world urgency is frequently the spur to get something done. If a problem is not born in a crisis it frequently cannot command the priority to obtain the necessary resources. But in a crisis there is frequently no time to pursue
all questions $=0$ a solution. There are therefore some questions which remain open. The role of the bottom and its characteristics has not been theoretically dealt with when the charge is on the bottom or when the depth is shallow. The phenomena shapiny the water cavity for shallow explosions in either deep or shallow watex have been treated only in gross approximations. The problem of making reliable predicticns of wave phenomena caused by large explosions or of scaling from one expeiiment to another may still be a subject of disagreement or at best of uncertainty. The making of unambiguous predictions should be a part of the repertoire of any explosion phenomena expert. Perhaps in these less urgent days it will be possible to complete the missing information and put this subject to the continued rest that is undoubtedly deserves.

```
BuOrd Experiments at Solomons 22 Jul - 4 Aug 1944
Conference on Conclusions 14 Auc; 1944
Trip to England Aug - Sep 1944
Kirkwood's memo on "Generation of Surface Waves by an Underwater
Explosion" written on this trip and published as Undex-94 by the
British.
Shot #6 at Solomons in 100 ft water 6 Sep 1944
Writing on Experimental Results (GKH)
    8 - 24 Oct 1944 (Interrupted)
Writing on Theory - Kirkwood & Seeger
drafted between Oct 1944 and Feb 1945
Production of Surface Waves by
    UERL draft by
Underwater Explosion
R. W. Spitzer 29 Nov 1944
(Distributed and Lumped Charges)
"Gravity Waves Produced by Surface
and Underwater Explosions"
W. G. Penney
```

Imperial College of
Science \& Technology,
London Mar 1945
"Waves in Bakex" W. G. Penney 24 Jul 1946
(Joint Task Force)
Baker Event Bikini Atoll 25 Jul 1946
"Surface Waves from an Underwater submitted to Underwater
Explosion" J. G. Kirkwood
and R. J. Seeger.
Explosion Research
British-American
Compendium.
27 May 1947
Identical article minus tables appeared in Journal of Applied Physics Vol. 19, pp 346-360 Apr 1948.
Writing on Experimental Results and Analysis (G. K. H.) resumed and completed Jan - Feb 1976.

1. Introduction

In the summer of 1944 tests were planned and conducted to produce gravity waves in water by explosions, and to determine their suitability for sweeping pressure mines. Although it is well known from casual observations of uncerwater explosions that the detonation of convention: 1 charges, say depth charges, produces practically no observable wave system, nevertheless it was felt desirable to try larger charges and to make specific preparations to observe whatever surface waves were formed.

2. Site

A site for this series of experiments was chosen in the Patuxent River at the Naval Mine Warfare Test Station (NMWTS) Solomons, Maryland. The depth of water at this spot off Sotterley's Point was about 40 feet over an area at least 2,000 feet by 1,000 feet. The bottom was a soft mud into which for example a mine would sink about three feet. This mud probably influenced the magnitude of the waves, but the first requirement was to find a large uniform area sufficiently remote to allow the experiments to be done.

3. Experimentai Arrangement

Observations on the waves produced were made in three ways: by aerial photography to determine wavelengths and velocities; by surface photography to measure surface wave amplitudes and periods; and by pressure recording systems placed on the bottom. The aerial photography was accomplished from a blimp. In order to measure the surface amplitudes a range of telephone poles was set up. Each pole was 30 feet long and was submerged in the water by a 300 pound anchor so that about 7 feet of the poie extended into the air. The top portion of the pole was painted with alternate black and white strips 6 inches wide. The range consisted of about a dozen poles in a strajght line about 140 feet apart.

The wave motion was found to have very little effect on the poles, except at distances less than about 300 feet from the explosion where the outward rush of water caused the poles to sway, rotating more or less about their anchors and thereby submerging themselves. The pressure recording systems consisted of units each composed of a NOL Mk 1 hydrophone, a bridge network and an Estraline Angus recorder. The hydrophone was protected from explosive shock by a rigid brenze cone which allowed slow seepage through a small hole but which screened out very sharp changes in pressure. This protective device was tried out in a preliminary series of shots made 22 July (reported by J. F. Moulton, Buord memorandum) in which it was found that the pressure sensitive diaphragm would operate
successfully if the shock impulse from the explosion, making allowance for surface reflection, was less than $0.25 \mathrm{lb} \sec / \mathrm{in}^{2}$.

The main shots werc carried out under Explosive Investigation Memorandum No. 62 under Buord forwarding letter S68 005316 of 22 July 1944. The schedule of shots fired is shown in Table 1.

Note to rable 1.

The bombs LC, AN, M56 were initiated by filling the nose fuze seat liner with Comp C-2 and detonating this statically by means of an Army Engineer Special detonator. The Demolition charges used were the lik 14 Mod 1 approximately 50 plus pounds Cast TNT no booster, $13^{\prime \prime} \times 13^{\prime \prime} \times 6 \frac{夕^{\prime} "}{}$ in cardboard box. Mk 9 approximately 115 pounds cast TNT with 63 grams auxiliary booster Mk 4 (1.6" diameter, 3" length granular TNT) $13^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ in steel container. For shot 4 , the charges were crated in cubical boxes approximately 5 feet on a side. In each crate a Mk 9 charge was set in the midde and an electric detonator was used to initiate it. Each crate contained 180 Mk 14 Mod 1 demolition charges and one Mk 9, making about 9,200 pounds of charge in each box.
4. Shot 1

The size of charge for the first shot was chosen by considering that the bubble radius of the expanded gases should be at least

equal to the depth of the water. For convenience the charges were placed on the bottom although it was realized that this might not be the most efficient use of the explosive. Since the wave making process is so inefficient from the standpoint of energy, the question as to the best possible position for the charge does not seem to be of prime importance. The maximum bubble radius for an underwater explosior of TNT at depth D is given in the absence of free or rigid surfaces by

$$
r_{\max }=13.5 \frac{W^{1 / 3}}{(33+D)^{1 / 3}} \text { feet }
$$

where W is the weight of charge in pounds. This assumes that 45% of the total explosive energy is retained in the bubble. Putting $r_{\text {max }}$ $=40$ feet gives $W=1,900$ pounds. The unit chosen for the first shot was a 4,000-pound bomb containing 3,362 pounds of TNT. This choice yielded a charge which was presumably large enough and at the same time easy to handle.

For Shot No. 1 the range of poles was photographed by means of especially mounted aircraft cameras having a field of view of 40°. and capable of taking a picture every $2 / 5$ second. In order to save film an estimate of the time of arrival of the waves at the various
poies was made using the velocity expected for waves of length great compared to the depth, i.e., $V=\sqrt{g h}=36 \mathrm{ft} / \mathrm{sec}$. For a pole at a distance of say 1,000 feet from the explosion, the earliest possible time of arrival of waves would be 28 seconds. At this time and thereafter, however, on Shot 1 there were observed no waves at all at these distances and consequently the cameras were turned off or in some cases not started and consequently no records of any value were obtained. However, a subsequent examination of the aerial pictures taken from the blimp at altitude 1,500 feet showed unmistakably a system of ring waves extending at least 1,400 feet from the explosion and with wavelength increasing with increasing distances. Consideration of these pictures shows that the long slow swell of the outer rings would not be observable except under very calm surface conditions and only then by an observer with some experience . Figure 1 shows a sequence of photographs taken at $t=$ $0,27,45$ and 71 seconts after the explosion.

5. Camera Arrangement and Details

Consideration of these aerial photographs made it necessary to investigate somewhat more in detail the wave system produced. Accordingly, on Shot 2 the camera setup was changed so that long focus narrow field lenses were used with one camera on each pole. The number of poles photographed was considerably reduced. A special 70 mm Mitchell camera was supplied and operated by the David Taylor Model Basin, which could photograph two poles simultaneously.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
1	142 Ft	7	976 Ft
2	284	8	1096
3	399	9	1264
4	546	10	1425
5	714	11	1575
6	849	12	1669

Figure T(a) Shot Number $1-3362$ Lbs. TNT on Bottom -- Water Depth~40 Ft.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
1	142 Ft.	7	976 Ft.
2	284	8	1096
3	389	9	1264
4	546	10	1425
5	714	11	1575
6	849	12	1669

Figure 1 (b) Shot Number $1-3362$ Lbs. TNT on Bottom - Water Depth $\sim 40 \mathrm{Ft}$.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
1	142 Ft	7	976 Ft.
2	284	8	1096
3	389	9	1264
4	546	10	1425
5	714	11	1575
6	849	12	1669

Figure 1(c) Shot Number 1 - 3362 Lbs. TNT on Eottom - Water Depth ~ 40 Ft.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
1	142 Ft	7	976 Ft
2	284	8	1096
3	389	9	1264
4	546	10	1425
5	714	11	1575
6	849	12	1669

Figure 1(d) Shot Number $1-3362$ Lbs. TNT on Bottom - Water Depth~40 Ft.

The records obtained by this camera were used to determine wavelength by measuring the difference in phase betweer waves at the two poles. In all the photograpinic work due attention was paid to getting optimum resolution by reducing the circle of confusion and the optical diffraction to a value less than the resolving power of the film. Details as to the various cameras used are given for the sake of completeness in Tabie 2. Wave amplitudes could be estimated to about $\pm \frac{1}{2}$ inch with the lenses of longest focal length.

6. Distances

The range of poles was set out at the beginning of the series and the positions of the poles were determined before each shot by means of a range finder (1 meter base) and a crude azimuth (polaris) circle graduaced in degrees. Tre distances and angles were plotted out for each shot and give rise to the following table of distances.

The various interpolar distances obtainable from this table permit an estimate to be made of the precision of measurement of distance. It turns out that if σ^{2} is the variance associated with the mean distance, m, between poles, then $\sigma= \pm 0.085 \mathrm{~m}$. This means for example that the best distance between pole 11 and 12 on all shots is 109 feet ± 6 feet, using probable error equal to $2 / 3 \sigma$.

Table 2 Details as to Cameras

Camera	Focal lenath	Speed	$\begin{aligned} & \text { Stop } \\ & =n \end{aligned}$	P_{c}	Field of View	nistance	6" at this distance appears on film as
$\begin{aligned} & \text { F54 } \\ & \text { in blimp } \\ & 7^{\prime \prime} \text { film } \end{aligned}$	10"	T.very 2 sec	--	--	40°	2000^{\prime}	. $0025^{\prime \prime}$
K25	$63 / 8^{\prime \prime}$	$2 \frac{1}{2}$ frames/sec	16	335^{\prime}	40°	380'-680	$\begin{aligned} & .0095^{\prime \prime} \\ & .0049{ }^{\prime \prime} \end{aligned}$
$\begin{gathered} 35 \mathrm{~mm} \\ \text { Mitchell } \end{gathered}$	17"	$\begin{gathered} 24 \\ \text { Erames/sec } \end{gathered}$	16	2390^{\prime}	$3.5{ }^{\circ}$	430^{\prime}	. 0201
$\begin{gathered} 70 \text { num } \\ \text { Mitchell } \end{gathered}$	$6^{\prime \prime}$	$\begin{gathered} 10 \\ \text { Erames/sec } \end{gathered}$	16	$298{ }^{\prime}$	19°	360^{\prime}	. $0069^{\prime \prime}$
Where $n=E / d$							
Resolving power of the film $\cong 50 \mathrm{lines} / \mathrm{mm}=.0008^{\prime \prime}$							
Resolving power of lens $=\mathrm{fO}=1.22 \lambda \mathrm{n}=.0004^{\prime \prime}$ if $\mathrm{n}=16$ for alllenses.							
$\therefore=$ Diameter of circle of confusion $\leq .00063^{\prime \prime}$							
Corresponding hyperfocal distance $=p_{\infty}=r^{2} / \mathrm{cn},$.							

(H) indicates hydrophone placed on bottom near pole. * charae not at pole.

```
    7. Wavelength vs. Velocity (aerial data)
```

On Shot 2 , photographs from the air were also obtained. The average interval between pictures was 2.5 seconds. From these pictures in which a scale was provided by a ba ge 110 feet long, the distances between some of the outer poles was determined. These compare well with the average interpolar distances obtained by range finder and circle. Thus:

Distance
Between Poles

Range Finder
Method Ave.
Aerial

9 and 10
158 feet
165 feet

10 and 11
110 feet
138 feet

11 and 1.2
109 feet
112 feet

From these photographs a plot was made of the distance travelled versus time since the explosion for the finst three troughs in the wave pattern (Figure 2). The troughs were identified by the presence of shadow. There is, however, some question as to whether the first trough observable is really the first trough in

FIG. 2 TIME - DISTANCE PLOT FOR TROUGHS A, B, AND C OF SHOT 2 (FROM AERIAL PHOTOGRAPHS)
the series since the glare from the sun makes that part of the water surface uniformiy light in the region into which any fapialy travelling leading wave would advance. This is illustrated in the photograph, Figure 3. This is mentioned as a caution in the application of the aerial technique for measuring wavelength. Indeed the hydrophone record appendea to Figure 3 shows that the first section has already arrived at pole 12 before a wave disturbance shows itself from the air.

Various wavelengths in the pattern resulting from Shot 2 reveals that the first one has been missed. The first visible trough is called A, the second B and the third C.

In Figure 2 it is seen that the slopes of the trree curves increase with distance and that the velocity $\sqrt{g h}=35 \mathrm{ft} / \mathrm{sec}$, is approached. It is also apparent that the separation between successive troughs increases with distance, which is to say that the wavelength is increasing with distance. Thus the separation between A and B varies as follows with distance:

Fupras 3 Shot Number 2 At this timp the frydrapionerecord at Pole 1 ? showed the

appests to tye the second suction (tatmetrd At

8. Wavelength vs. Velocity (surface data)

On Shot 2 the 70 mm Mitchell camera was trained on poles 11 and 12. The distance between these poles is taken as 109 feet, The surface records obtained are reproduced in Figure 4. The pressure record obtained near pole 12 is also shown. The correspondence between the surface amplitude measurements and the bottom pressure measurements is very good. It is possible to number the positive pressure peaks after the first suction, and the surface crests after the first trough and to put these into one to one correspondence. The camera was set to run at 8 frames/second, but comparison of the times of arrival of corresponding peaks at the bottom and at the surface, assuming that the Esterline-Angus timescale was correct, reveals that the camera was running a little fast. To correct intervals the following factor must be used

$$
\Delta t_{\text {true }}=.87\left(\Delta t_{70} \operatorname{man} \text { camera }\right)
$$

Even this does not provide a perfect correction because of local variations of speed in the camera.

The wavelengths were measured from the film record as follows: Let $\Delta t_{70} \approx$ time of arrival at pole 12 -- time of arrival at pole 11 . The resulting velocities, periods and wavelengths are listed in Table 4.

NSWC/WOLMP 76-15

Table 4 Wavelengths and Velocities, Shot 2

These wavelengths are not comparable with those measured from aerial photographs, since those were measured from trough to trough, whereas these are measured from crest to crest. Further, as has been mentioned, it is uncertain whether the first trough was visible at all from the air.

Schematically the situation is thus:

This might suggest that perhaps A is really the third trough. This possibility is not ruled out by the comparison of the velocities. It is certainly truc that difficulties of observation make the measurements from aerial photographs much less reliable than direct measurements on the surface. In subsequent shots the aerial photography was dispensed with.
9. Addendum (1976)

The consistency of these measurements may be checked as follows: If $\Delta t=$ time taken for a given crest to travel from pole 11 to pole 12, i.e., 110 feet then,

$$
\begin{equation*}
\text { velocity }=\frac{110}{\Delta t} \tag{I}
\end{equation*}
$$

$T=$ period from one crest to the next at pole 12. Hence, $\lambda=$ velocity x T. Having found the value for λ we ask what velocity does this require, from

$$
\begin{equation*}
v^{2}=\frac{g \lambda}{2 \pi} \tanh \frac{2 \pi h}{\lambda} \tag{2}
\end{equation*}
$$

(See Figure 5)
$\lambda=\quad \begin{array}{lllllllllllll}214 & \mathrm{fi} & 162 & 116 & 108 & 97 & 92 & 94 & 88 & 87 & 88 & 95\end{array}$
average
vel from (1) $36 \mathrm{ft} / \mathrm{sec} 31.5 \quad 29.5 \quad 27.5 \quad 26 \quad 26.5 \quad 26.5 \quad 26 \quad 25 \quad 26 \quad 26$
velocity
$\begin{array}{llllllllllllllll}\text { from (2) } & 30 & 27 & 24 & 23.4 & 22 & 21 & 21 & 21 & 21 & 21 & 21\end{array}$

The discrepancy in velocity can be largely eliminated by eliminating the correction made for the speed of the camera. If in fact the camera was accurate and the recorder was inaccurate, (and there is no way to be sure now) then the systematic bias can be relieved. This means that the values for the periods and durations as

NSWCANOLAMP 76.15

determined by the hydrophone at least on this shot should be increased by about 15\%. Rather than indulge in such a correction program I will leave the numbers as originally noted with a caution as to the general accuracy of all the measurements. Figure 6 shows the surviving aerial photographs from Shot 2 , taken at $11,27,46$ and 57 seconds after the explosion. In the two earlier pictures the waves had not appeared whereas in the last picture the earliest swells have gone beyond the range of poles. The picture taken at 46 seconds, however, lets one with a little imagination list the distances from the outermost dark ring (beyond pole 12) to the next one inside and so on. These distances are wavelengths and are approximately $178,113,97,86$, and 59 feet which brings us just inside pole 9. This is an instantaneous view of the wave pattern. The longer waves travel faster than the shorter ones and consequently the pattern spreads out creating longer waves which then travel faster. The whole pattern will spread out until all the waves are long enough to travel at the same maximum speed. By that time however the waves will have vanished. Even in this photograph at 46 seconds, the "first" wave has a wavelength which is somewhat shorter than the wavelength of the first wave obtained from pole photography. It is therefore concluded that the waves of very long length (and hence very slight slopes) cannot be reliably detected by aerial photography.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
$\mathbf{6}$	168 Ft	10	753 Ft
7	299	11	895
8	419	12	1007
9	581		
Explosion Occurred at $\mathrm{t}_{\mathrm{O}}=16: 37: 09$			

Figure G(a) Shot Number 2 - 6724 Lbs. TNT on Bottom - Water Depth~40 F1.

Approximate Pole Distances with Explosion at 0

Pole Number	Distance	Pole Number	Distance
6	168 Ft.	10	753 Ft.
7	299	11	895
8	419	12	1007
9	581		
Explosion Occurred at $t_{0}=16: 37: 09$			

Figure 6(b) Shot Number 2-6724 Lbs. TNT on Bottom - Watar Depth ~ 40 Ft.

Appooximate Pole Distances with Explosion at 0

Pote Number	Distance	Pole Number	Distance
6	168 Ft .	10	753 Ft .
7	299	11	895
8	419	12	1007
9	581		
Explosion Oecurred at $t_{0}-16: 37: 09$			

Apmraximate: Pole Distances with Explosion at 0

Pole Number
6

Pole Number	Distance
10	753 Ft
11	895
12	1007

8
581
Fxploswon Occurnect at :o-16:37:09

Funte: 6if! Shot Number 2-6724 Lbs. TNT on Bottom … Water Depth~40 Ft.

10. Comparison of Surface and Bottom Measurements

The pressure record obtained in the vicinity of pole 12 is also shown in Figure 4. A comparison between the surface and bottom amplitudes can be made by use of the simple monochromatic theory. It has already been seen that the surface and bottom amplitudes keep in phase very well. This is to be expected from the simple theory.

It can be shown (Appendix A) that if η is the surface amplitude in inches, and Δp is the excess pressure in inches of water at a height z above the bottom, then

$$
\eta=\Delta p \frac{\cosh k h}{\cosh k z}
$$

where $h=$ depth of the water and $k=2 \pi / \lambda$. This relation holds for either plane waves or cylindrical waves. In the present case the pressures were measured at a distance of 1.5 feet from the bottom. The depth of the water on Shot 2 of the hydrophone was $37 \frac{1}{2}$ feet. Hence $z=1.5$ feet, $h=37 \frac{1 / 2}{}$ feet.

In order to apply this relationship it is necessary to know or estimate λ.

We associate with each peak and crest a wavelength which is the average distance to the two neighboring peaks on either side. (See Table 4). In Table 5 we compare the measured surface amplitudes with those calculated from the bottom amplitudes. The agreement is reasonable.

Figure 7 reproduces all the existing hydrophone records obtained in the solomons series.

Figure 8 displays the only other measurements of surface and bottom amplitude over a series of many waves. (For shot 4.) Although there are no nearby measurements as in the case of shot 2 from which the wavelength may be inferred, it is possible here to measure the periods between successive peaks and determine wavelength assuming that the wave train is at least locally monochromatic. Ihis assumption does not always apply. The period P is given by

$$
v=\frac{\lambda}{p}=\left[\frac{g \lambda}{2 \pi} \tanh \frac{2 \pi h}{\lambda}\right]^{\frac{1}{2}}
$$

Furthermore, at the bottom the pressure change, Δp, in linear units is related to the surface amplitude η by
Table 5 Surface and Bottom Amplitudes, Shot 2

number	2	3	4	5	6	7	8	9	10	11
$\Delta \mathrm{p}$ measured	1.65"	. 8	. 02	. 03	.14	. 27	. 37	. 46	. 37	.10
n calculated	3.10 "	2.25	. 08	. 15	.86	1. 72	2.50	3.44	2.78	.67
η measured										
($=1 / 2$ wave height)	3.35"	2.20	. 6	1.0	2.0	2.6	3.75	5.0	3.75	2.2

(= /2 wave height)

Figure $7(1)$ Hydrophone Fiecords at Soiumons

NSWC/WOL/MP 76-15

$$
\dddot{\eta}=\Delta \mathrm{p} \cosh \frac{2 \pi h}{\lambda}
$$

Using these relations it is possible to construct the curves of Figure 9.

Referring to Figure 8, the times between successive wave crests, P, are:

Wave Number	1	2	3	4	5	6	7	8
Period (sec)	12	8	8	7	6.7	6.0	6.0	5.7
From Figure 9:								
$\Delta \mathrm{p} / \mathrm{n}$ at 40 ft	. 83	. 65	.65	. 55	. 50	. 41	. 41	. 37
$\eta=\frac{1}{2}$ (crest + trough)	3.3"	2	5.5	5.5	5.5	5.5	5.5	3.5
Calculated Δp	2.7"	1.3	3.6	3.0	2.7	2.2	2.2	1.3
Measured Δp	2.81	1.1	2.6	2.6	2.2	1.8	1.6	0.6

The agreenent is reasonable.

The other cases where comparison is possible between bottoin and surface measurements give similar results, namely for Shot 3 at 1048

NSWC/WOL/MP 76.15

feet and for Shot 4 at 1028 feet. As already indicated, if the slight elevation of the hydrophones above the bottom is neglected, then under the assumption that the wave motion is monochromatic, i.e., consists of a set of waves all having the same wavelength (which is not the case) then $\eta=\Delta p \cosh 2 \pi h / \lambda$. If h is taken to be 40 feet, the factor to be applied to Δp in order to calculate η depends on wavelength λ in the following manner:

λ feet	400	300	200	150	100	80
$n / \Delta p$	1.21	1.37	1.89	2.78	6.19	11.7

If λ is small, a smail error in λ will produce a larger change in the factor. For this reason and others, one would not expect very close agreement between measured η and η estimated from bottom pressure measurements, at short wavelengths.

11. Summary of Data

The original data on the Solomons tests consisted of hydrophone records and films. The originals and the films have long since disappeared, but measurenents were made from the films at the time. 1 These results, wave heights, periods, pressures and distances are all summarized in Table 6, which pertains to the 40 -foot sites. ${ }^{2}$

Table 6 Data Sumaty
Suction Phase

inst Positive Phase

Reanck: On Shot the guction was divided into two shallow parts. Surface
hecords asdicate brief positive phase betveen them, the pressure record does
not. The :carred thes conctin the duration of both parts, the unstarred that of the figst , irrt,

Mey: (a) data for some member of second wave eroup.
(b) unreliable data. $\frac{g}{T^{2}}$ (anputed from $\frac{2 \pi h}{T}$.
(d) blimp datin.

Before these data are subjected to analysis (in chapter III), it will be useful to review in the next chapter some of the theoretical concepts to be used.

Except for Figure 4 and Figure 8 there are no extant records from photography. Shot 1 yielded no data except from aerial photographs. Shot 6 done in 100 feet of water and only with hydrophone data is listed in Table 7 (Chapter III). Figure 7 reproduces the only hydrophone data, namely: Shot 2 at 1007 feet, Shot 3 at 1050 feec, Shot 4 at 1008 ard 2150, Shot 5 at 765 and 1860, and Shot 6 at 1485 in 100 feet of water. Figure 8 reproduces film and hydrophone data from Shot 4 at 2140 feet.

1. Historical Introduction

The literature of gravity waves is extensive starting in 1776 with Laplace who considered water motion in a rectangular canal. Results obtained by Lagrange a few years later for shallow water stated that the velocity of travel depended only on the water depth and not as Laplace found on the wavelength. As Thorade says in his "Problems in Water Waves " $19311^{(1)}$ in the Historical side Lights page 4, "At the end of the $18^{\text {th }}$ century there had been put forth two different theories in regard to waves, the mutual relation between which had never been explained, so in 1802 Gerstner put forth a new theory which assumed that the water was infinitely deep, while the scientific study of waves was again promoted by Poisson and Cauchy (1815), two savants of high rank. Both blamed their predecessors for having studied only fully developed waves, and they dealt with the creation of the waves by citing the following illustration: submerge a solid object, not too large, in water of unlimited depth; wait until the water has become calm and then suddenly withdraw the object. What kind of waves will be formed?" of course both Laplace and Lagrange were right. If the wavelength was small compared with the depth, Laplace was right. If wavelength was long compared with
depth, then Lagrange was right. Poisson and Cauchy introduced greater complexity as well as insight to the subject by iritiating the wave motion with a mixture of wavelengths needed to describe their initial conditions. Thorade's book contains much historical information. The subject of waves is discussed in a few short paragraphs by Landau and Lifshitz "Fluid Mechanics" ${ }^{(2)}$ starting with a deceptively simple introduction: "The free surface of a liquid in equilibrium in a gravitational field is a plane. If, under the action of some external perturbation, the surface is moved from its equilibrium position at some point, motion will occur in the liquid. This motion will be propagated over the whole surface in the form of waves, which are called gravity waves, since they are due to the action of the gravitational field. Gravity waves appear mainly on the surface of the liquid, they affect the interior also, but less and less at greater and greater depths."

2. General Considerations

Abstract

The gravity waves considered by Cauchy, (3) Poisson, (4) Penney, ${ }^{(5)}$ Kirkwood and Seeger ${ }^{(6)}$ occur in a medium which is irrotational, nonviscous, incompressible and of uniform density. A very short and useful book by C. A. Coulson ${ }^{(7)}$ "Waves, a Mathematical Account of the Common Types of Wave Motion," Oliver and Boyd, Itd. 1941, divides the types of wave motion in liquids into two groups. One group has been called tidal waves or better long waves in shallow water and arises when the wavelength is much

greater than the depth of the liquid. With waves of this type the vertical acceleration of the particles is neglected in comparison with the horizontal acceleration. Coulson refers to the second group as surface waves in which the vertical acceleration is no longer negligible and the wavelength is much less than the depth of the liquid.

The various treatments all use a linear equation of motion, neglecting the square of the particle velocity, and assume that the amplitude is small compared with the water depth. Of course each treatment insists on the conservation of mass, and requires the pressure to be constant at the free surface and the normal component of the velocity at a rigid boundary to be zero. The differences in treatment then relate to the method of prescribing the initial conditions or of dealing with the explosion gas bubble. The solution is made up by a synthesis of individual solutions such that at $t=0$ the function is made to fit the initial surface contour (or an initial set of velocities on a flat surface, the impulsive case). Thereafter, if t is allowed to vary, the solution which was made to fit initially continues to evolve its own description of what happens which fits all the conditions and is also unique. The waves produced depend on the volume of the cavity.

NSWCMOLAP 76-16

3. Cauchy, Poisson, and the Explosion Problem

Note that in the first memoires on the theory of waves (Cauchy, Poisson) it was seen that a complete solution could be achieved from one of two possible initial conditions. the problem was initially treated only for plane waves, $i . e$. , waves that do not spread -- for example, in a canal.

The variables are distance, height, and time. For these first papers the medium was infinitely deep and infinitely extended in directions $+x$. See Lamb ${ }^{(8)}$, sections 238 and 239.

Case 1. Initial elevation of the free surface around the origin.

FREE SURFACE

The initial elevation is confined to the immediate neighborhood of the origin. The initial elevation is given by $f(x)=0$ for all but infinitesimal values of x, but

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

a so called δ function. The subsidence of this initial elevation produces a train of waves at a distance, the first arrival of which is a positive wave, a crest. The assumption of a delta function here is mathematically the simplest but physically quite unreal in that it calls for an infinitely tall infinites simally thin column of water at the origin which descends under gravity with constant acceleration to feed the wave system. poisson preferred to start with an initial depression in the water formed by a paraboloid which at $t=0$ was suddenly removed. He solved this problem for the case of propagation in two dimensions.

If one were to start from rest with a crater in the surface, which is otherwise at the undisturbed level, the first thing to arrive would be a trough. However, an explosion near the surface, blowing out, cannot produce a pure cavity. There has to be an edge of water piled up above the undisturbed level at the same time the cavity reaches its maximum. Further, at this instant the maximum radius of the cavity may be at rest, but the lower parts of it are already filling in and the outer parts of the annular edge are moving outward. It might be possible to obtain a solution using the Cauchy-Poisson method if one could assume the proper "stationary" contour for the water surface in the blowout case. This would be a cavity surrounded by an annulus all taken to be at rest at a time
$t=$ zero. It would be necessary to obtain an analytic expression for this contoux, assuming cylindrical symmetry, as a function of r and z, and depending on the parameters charge weight, charge depth and water depth. Penney, in fact, achieved this approximately, but its validity is limited to depths just short of blowout.

Case 2. The other solvable situation is that of an initially flat surface with a limited part of it endowed at $t=0$ with a distribution of vertical velocities, i.e., initial impulses are applied to the surface supposed undisturbed. In the case of a deep explosion, the underwater shock wave is reflected almost immediately from the free surface imparting upward velocity to successively deeper layers. The resulting spray dome is flung into the air and descends much later, in some cases, after the waves have already left the area. Consequently the velocity imparted upward has negligible effect on wave formation. The removal of water in the form of spray by the shock wave reflection leaves a slight depression in the remaining surface which could contribute to wave formation but will be neglected. The only remaining cause for wave formation is then the expanding gas globe which increases to a maximum size and then decreases in a time equal to the bubble period. This situation is treated in Kirkwood and Seeger's paper and is not applicable to the blowout situation. On the other hand, an explosion in air over water at rest does reproduce the condition pertaining to the second cauchy calculation. The initial impulse is downward into the water as in Cauchy's case. The resulting wave
train again begins with a positive pulse. The water surface initially having to move downward requires the adjacent surface to move upward, the water being incompressible. It is this elevated annulus which again causes the initial wave train to proceed. Because of the poor impedance match between air and water, even for air compressed in shock, the fraction of the air blast energy impinging on the water surface which could be taken up by the water in kinetic energy is small, probably less than 4% or perhaps 1% of the total explosion energy. (See Appendix B for Energy in Surface Waves.) On the other hand, the energy in the nonventing underwater explosion retained in the gas globe is approximately 45% of the total explosion energy, and all of this energy is available for moving the water. One therefore expects that an underwater explosion would be more efficient at making waves than an air burst. However, if a charge is exploded deep enough, the bubble expansion will have very little effect on the surface height. Waves are produced only by a local variation in surface height, not by a gradual or general slight increase in height. As the deep gas globe oscillates and rises, it emits pulses at each minimum, causes turbulence and otherwise dissipates its energy so that no surface waves are made.

As we shall see later, the efficioncy of the wave making process is very low even in the underwater case where the actual wave energy is only a fraction of a percent of the total energy.

Clearly a key question is at what position above or below the surface are the greatest waves made. It seems reasonable that this is at some point below the surface rather than $\mathfrak{l b o v e}$. It is important to see how the cavity or crater formation varies with depth near the surface. This question will be considered in a later section.

It is apparent from Lamb's discussion of wave propagation in two dimensions (reference (8), Section 255) that Cauchy and Poisson worked this problem and also that the latter considered the formation of waves from "an initial paraboloidal depression." If we start with a limited initial displacement, then the description of this contour will be a superposition of all wavelengths. As these waves travel outward, the longer ones will travel faster than the shorter ones so that after a while the original harmonic content of the disturbance is spread out and displayed on the water surface. This is true as long as the medium is dispersive, i.e., for those waves which are short compared with the depth. However, the asymptotic sclution for diverging (cylindrical symmetry) waves in an unlimited sheet of water of uniform depth (reference (8), Section 194, 195) shows that the amplitude of these waves ultimately varies inversely as the square root of the distance from the origin. This is readily seen from the fact that at a large distance the wavelengths are large compared with the depth and consequently all travel at the same speed. Therefore, the total energy of a wave is proportional to the amplitude squared and to the circumference of
the circle which the wave has reached, but noc to the wavelength which now is constant as distance is further increased. Assuming there is no energy dissipation, the result follows. This is mentioned because close in to explosions the wave amplitude decreases inversely with distance, not with the square root of the distance. This is consistant with the dispersive mode of propagation in which the wavelength is not constant but increases with distance. The transition from one mode to the other is gradual. Also, see brief discussion of dispersion in Appendix C.
4. Perney's Crater Assumption

Penney in his paper on Gravity Waves ${ }^{(5)}$ has tried an ingenious description of the surface crater. The wave system is released from rest at time zero from a configuration given by

$$
\xi(r)=\frac{2 D^{4}}{3}\left\{\frac{1}{\left(D^{2}+r^{2}\right)^{3 / 2}}-\frac{3 D^{2}}{\left(D^{2}+x^{2}\right)^{5 / 2}}\right\}
$$

(This configuration applies to only one position of the explosive charge, namely that depth, D, at which the ensuing maximum bubble just reaches the plane of the free surface above it.) The first
term in $\xi(x)$ describes the maximum contour of the dome formed by the expanding bubble. The volume of this dome above the former free surface is equai to the volume of the spherical cavity beneath it, namely $4 / 3 \pi D^{3}$. The second term replaces the spherical cavity with another one of the same volume and of the same class as the surface dome. If $r=D \sqrt{2}, r$ being horizontal distance from a point in the undisturbed plane directly over the charge, then $\xi(r)=0$. For greater values of r the value of ξ is small but positive, so that the expression for ξ describes an open crater if we subtract the second term from the first. In practice it takes time for the dome to fall back into the bubble, and during that time the bubble is filling in from beneath. However, we can look on the crater as a closed cavity or an open one; its mathematical description is the same if we neglect the time of collapse. Using this and other considerations Penney calculated that the explosion of 2,000 tons at optimum depth would create a wave system, the leading part of which was a trough that would be roughly 30 feet deep at a distance of 1,000 feet. The optimum depth was described as the depth at which the maximum bubble became tangent to the plane of the origina? undisturbed surface. The optimum depth for 2,000 (long) tons is approximately 300 feet depending on the fraction of the total energy which is assumed to be retained in the bubble. We shall assess in a later section (Conclusion) how good an estimate this was.

This paper also contains the suggestion that the explosion of a charge at a depth D less than its optimum depth will produce a wave
system which is exactiy the same as a charge of less weigh., for which the optimum depth is D. TY.is implies that if a charge is at optimum depth or less, the wave system cannot be enlarged by increasing the charge weight at the same depth. The bigger the charge the more blows out, and the wave system is the same. This statement neglects the effect of increasing air blast on the wave formation.
5. Kirkwood's Basic Theory

The Kirkwood and Seeger theory ${ }^{(6)}$ is also plagued by the bubble behavior near either rigid or free surfaces. The expression for maximum radius is invalid in these cases but is used as a means of estimating bubble volume. However, in treating the case of a charge on the bottom, the calculated bubble volume is arbitrarily divided by two to compensate for energy loss into the bottom. Although the volume of gases is the same in these two cases (free water and bottom), one must remember that the volume of the bubble is thousands of times greater than the original charge volume and is more dependent on the distribution of energy than on the original gas volume. In the case of free water, the theory proceeds quite elegantly from a simple spherical source and its image in the rigid bottom, to a solution for a complete potential function Φ which satisfies the free surface boundary condition. The strength of the source is $d V / d t$ where V is the volume of the spherical bubble as a function of time. The initial configuration of the sea is flat and
at rest. Quoting from Kirkwood and Seeger, The evaluation of the integrals involved in Φ for an actual gas globe is straightforward, but lengthy. It is convenient to introduce, therefore, a simplifying assumption, the value of which must be tested by analysis of the experimental data. If the period, τ, of the first pulsation of the gas globe is much less than the time interval after the explosion, it is reasonable to suppose that $V(t)=\bar{V}$ for $0 \leq t \leq \tau$ where the constant \bar{V} is some average volume for the period τ." This simplification which then wiped out a term involving dv/dt was entirely reasonable, although it is amusing that none of the subsequent experiments was carried out in free water where the theory could have been properly tested. Now for the first time we have a theory in which the period of the gas globe oscillation appears explicitly. If this period is zero, there is not time for anything to happen and the waves are zero.

The theory reduces to the following basic formula for the wave pressure in dimensionless variables:

$$
P_{z^{\prime}}\left(r^{\prime}, z^{\prime}, t^{\prime}\right)=\operatorname{pgh}\left(1-z^{\prime}\right)+\frac{\rho g}{2 \pi h^{2}} \overline{V_{z^{\prime}}} \tau^{\prime}\left(r^{\prime}, z^{\prime}, t^{\prime}\right)
$$

where $G_{z^{\prime}} \tau^{\prime} \tau^{\prime}\left(x^{\prime}, z^{\prime}, t^{\prime}\right) \equiv G_{z^{\prime}}\left(r^{\prime}, z^{\prime}, t^{\prime}\right)-G_{z^{\prime}}\left(r^{\prime}, z^{\prime}, t^{\prime}-\tau^{\prime}\right)$

$$
\text { and } G_{z^{\prime}}\left(r^{\prime}, z^{\prime}, t^{\prime}\right) \equiv \int_{0}^{\infty} \frac{\cosh \beta z^{\prime} \cosh \beta z^{\prime} E}{\cosh ^{2} \beta} \cos \omega^{\prime} t^{\prime} \quad 0\left(\beta r^{\prime}\right) \beta d \beta
$$ with origin in bottom,

$$
\begin{aligned}
& h=\text { water depth; } z_{E} \text { is charge position above bottom. } \\
& r=\text { horizontal distance, } z=\text { vertical distance measured upward. } \\
& t=\text { time; } \tau=\text { explosion bubble period. }
\end{aligned}
$$

$$
r^{\prime}=\frac{r}{h}, z^{\prime}=\frac{Z}{h}, z_{E}^{\prime}=\frac{z_{E}}{h} .
$$

$$
t^{\prime}=t \sqrt{\frac{g}{h}} ; \tau^{\prime}=\tau \sqrt{\frac{g}{h}}, \omega^{\prime}=\omega \sqrt{\frac{h}{g}} .
$$

$$
\omega=\frac{2 \pi}{T} ; \beta=k h=\frac{2 \pi}{\lambda} h
$$

$$
\omega^{\prime}=(\beta \tanh \beta\rangle^{\frac{1}{2}} \text { (Same as found in Appendix A) }
$$

The integrals for G have been evaluated by the Mathematicr Tables Project under the Appliea Mathematics Panez of the NoRC and axe published in Navord Report No. 401. Most of the tables are also puolished in the Underwater Explosion Research Compendium Volume II, pages 707-760. The tables are computed for $z^{\prime}{ }_{E}=0$, i.e., charge on the bottum. Kirkwood and Seegex remark that the G values are not - nsitive to the value of $z^{\prime} E^{\prime}$, having calculated G for $z_{E}=\frac{1}{2}$ and 1 .

It is apparent that there are two major factors which influence the magnitude of the waves - - first, the value of τ which determines how much the basic function $G_{z^{\prime}}\left(r^{\prime}, z^{\prime}, t^{\prime}\right)$ will ke reduced by a short kubble expansion, and second the quantity \bar{V} which will depend on the charge quantity, the water depth, the charge depth, proximity to surface or bottom and the time over which the value is to be averaged. In comparing experiment with theory, it is clear that the expression given at the end of the Kirkwood and seeger report ${ }^{(6)}$ is applicable only to the nonblowout case. Gross divergences between it and the measurements for charges blowing out are not a refutation of the theory.

If the charge is on the bottom, $z_{E}{ }^{\prime}=0$. If $z^{\prime}=0$, then the basic formula gives pressure variations as observed at the bottom. If $z^{\prime}=1$, then the formula gives the variations in surface displacement, or wave height, η.

6. Influence of Bubble Period

It will be desirable to estimate the change required by the Einite value of $\tau^{\prime \prime}$, According to the theory, the wave produced by a disturbance of zero duration (i.e., no disturbance, $\tau^{\prime}=0$) is null. The wave produced by the disturbance of longest duration, t ' $=\infty$, is determined from the function G_{0}. For intermediate values of τ^{\prime}, the waves are computed from

$$
G_{O, t}=G_{0}\left(t^{\prime}, z^{\prime}, t^{\prime}\right)-G_{O}\left(r^{\prime}, z^{\prime}, t^{\prime}-T^{\prime}\right)
$$

The amplituades thus generated are usually smaller than the G_{o} ones but not always.

One way to visualize the effect of the bubble period on wave formation is to plot G_{0} vs t ' at a given distance on transparent paper and to prepare a duplicate plot. By placing the duplicate under the original and transposing it to the left by an amount equal to τ^{\prime}, we have the function $G_{0}\left(t^{\prime}-\tau^{\prime}\right)$. The difference in the two curves is $G_{o, \tau^{\prime}}$, For example, Figure 10 is a plot of $G_{0}\left(10,1, t^{\prime}\right)$ made from the table for this particular distance. In order to obtain the time variation of the surface displacement at a reduced distance of 10 when a charge is exploded on the bottom, it is

NSWCNOL/MP 76.15

necessary to displace this graph to the left by an amount equal to τ^{\prime}, thus obtaining $G_{0}\left(10,1, t^{\prime}-\tau^{\prime}\right)$ and then to subtract this curve from the previous one obtaining $G_{o, \tau},\left(10,1, t^{\prime}\right)$. More useful is the observation first made by R. W. Spitzer ${ }^{(9)}$ that the value of $G_{o, r}$, for the first minimum is proportional to τ^{\prime}. This is not true if T^{\prime} is too large, but does hold for τ ' up to the value 1.1 and probably further as the tables in Appendix D show. The values of $G_{0, \tau}$ for the first and second maxima, and the first and second minima are tabulated at successive scaled distances and for increasing values of τ^{\prime} in Appendix D. The durations of the first and second crests and troughs are also tabulated. These tables which were computed, I believe, by the Buord Group on Theory of Explosives, are useful for analysis and prediction of waves from up to a ton of explosive. For very large explosions the values which pertain are those for $\tau^{\prime}=\infty$.

As an example of the use of these tables, we note that the sum of the first minimum and the second maximum pressure on the bottom is proportional to the magnitude of the trough to crest wave height on the surface. Hence, we expect $r^{\prime} \times \Sigma G$ to be constant if the waves are dispersive and $\sqrt{r^{\top}} \times \Sigma G$ to be constant if the waves are of long wavelength.

	$\Sigma \mathrm{G}$ if		EG if	
r^{\prime}	$\tau^{\prime}=\infty$	$\sqrt{T} \times \Sigma G$	$\tau^{\text {2 }}=1$	$r^{\prime} \times$ ¢ G
5	.1299	.290	. 1442	. 720
10	. 0960	. 302	. 0844	. 844
15	.0758	.294	. 0583	. 870
25	. 0529	. 264	. 0351	. 870
50	. 0311	. 221	.0162	. 810
500	. 00388	. 087	. 00095	. 475

We note that columns three and five are fairly constant except at $r^{\prime}=500$) which is to say for values of T^{\prime} up to 1 the waves are short and dispersive. For t'very large, i.e., very big explosion, waves are long and hence nondispersive.
7. Arrival Times

From the tables in Kirkwood and Seeger UER Volume II, one can identify the arrival times of various events such as the first cresc, surface and bottom, the first trough surface and botton and the second crest surface and bottom. These are plotted in Figure 11. The surface and bottom events travel together. The first crest fits the rela'ion $r^{\prime}=t^{\prime}$ from which we find $r / t=\sqrt{g h}$ which is the velocity of shallow water waves, i.e., where wavelength is long compared with depth. The slight curvature of the other two curves shows that these later waves start out with the shorter wavelengths.

FIG. 11 REDUCED TIME OF ARRIVAL OF CRESTS AND TROUGH.

8. Comparison of Theory with Experiment

The only data we have found taken in free water, i.e., off the bottom and not blowing out, are from Charlesworth's experiments at the Road Research Laboratory and reported in UER Volume II, page 695 under the date February 1945. (10) Charlesworth measured the wave amplitude as a function of time at a point 55 feet away from a series of 32 -pound charges of Polar Ammunition Gelignite (equivalent to TNT) detonated at different depths in 15 feet of water. The data taken for the charge at 8 -foot depth which is just at the point of breakout, giving maximum waves, were used by A. R. Bryant of the same laboratory to compare with a prediction made using Penney's theory. This is reported in UER Volume II, page 701, dated September 1945. (11) Bryant was able to show almost perfect agreement between theory and experiment for the first two waves. He postulated that disagreement thereafter could be due to detailed differences between the actual shape of the cavity and the assumed shape. He does point out that since the zero of time was not known for the experimental curve it was arbitrarily chosen to give the best fit. In all of Charlesworth's experiments the first thing to arrive is a trough, and this is consistent with the hypothesis that the motion starts from rest by filling in a cavity. Other data, at Solomons and elsewhere particularly for shallow explosions, show that a crest, albeit a low one in some cases, is the first thing to arrive. The theory of Kirkwood and Seeger also predicts an initial crest. For this reason one cannot expect the two theories to agree in minute detail particularly at the beginning of the wave train.

It would be of interest to calculate from the Kirkwood and Seeger theory what would be expected in the charlesworth experiments. This would require the use of the function $G_{Z_{E}}\left(r^{\prime}, z^{\prime}, t^{\prime}\right)$ in which $z_{E}=\frac{1}{2}$ and $r^{\prime}=55 / 15=3.7$. Unfortunately this particular function was not tabulated. The only relevant calculations displayed in Kirkwood and Seeger show that the G functions on the bottom, i.e., $z^{\prime}=0$, are virtually the same whether $z_{E}=\frac{1}{2}$ or zero. We shall assume that the G functions for surface waves, i.e., $z^{\prime}=1$, are the same whether the charge is on the bottom or halfway down. We must use the depth of the water not the depth of the charge for scaling purposes, i.e., $r^{\prime}=3.7$. The smallest value of r^{\prime} for which there are any calculations is 5. The amplitude vs time is computed from

Amplitude at surface $=\frac{2 x 441 W}{h^{2}(h+33)} G_{o, t^{\prime}}\left(r^{\prime}, I, t^{\prime}-\tau^{\prime}\right)$ in $f t$ at $r^{\prime}=5$

NOTE: The value 441 in this formula is obtained using

$$
L=14.0\left(\frac{W}{h+33}\right)^{1 / 3}
$$

If we use $L=13.5\left(\frac{W}{h+33}\right)^{1 / 3}$ which is more in line with other data (period observations and so on), then the value in the formula should be 406 .
where the factor of 2 has been restored since the charge is not on the bottom, and where $h=$ water depth (15 feet) and $w=32$ pounds. $\tau^{\prime}=\tau \sqrt{g} / h$ and

$$
\tau=\frac{4.36 W^{1 / 3}}{(D+33)^{5 / 6}} \mathrm{sec}
$$

$$
\tau^{\prime}=1.26
$$

The results are shown in Figure 12 for $r^{\prime}=5$ (Inner Curve). The amplitude has also been multiplied by the ratio of distances in order to estimate the values for $r^{\prime}=3.7$ (Outer Curve). The agreement with respect to period is fair although there is some uncertainty at the beginning, as already remarked upon. The amplitudes do not agree very well at the beginning. Pexhaps the agreement may be considered fair in view of all the approximations and enatling assumptions which have been made.

If we take the assumption that the G function is the same whether the charge is halfway down or on the bottom, we can use the bottom function and say that the water is only 8 feet deep. In this case $x^{\prime} \cong 7$ and we find from Kirkwood and Seeger, Figure $2 e$ and Figure 2 g , that $\mathrm{G}_{\mathrm{o}}\left(7,1, \mathrm{t}^{\prime}\right)$ for the maximum of the first positive phase is +.03 and $G_{0}\left(7,1, t^{\prime}\right)$ for the minimum of the first negative phase is -.10. Predicted wave crest is

FIG. 12 COMPARISON OF THEORY WITH CHARLESWORTH'S DATA

$$
\frac{441 \times 32}{8^{2}(8+33)} \times .03=.16 \mathrm{ft}
$$

Similarly the predicted trough is . 54 feet.

The experimental measurements presumed for the same waves are . 5 feet and . 9 feet, respectively. The agreement for crest to trough magnitude is .70 theory vs 1.40 measured. This is in rough agreement with the prediction made before. Note that we have removed the factor of two because the charge was assumed to be on the bottom in order to obtain the calculated functions. Such procedure shows that the theory is more or less self-consistant, but does not improve agreement with experiment. This is the only shot (in free water) that matches the Kirkwood and Seeger assumptions, and it is also the only shot where the experimental result is greater than the theory. It is regrettable that there were not available data from more free water shots so that a better test of the theory could be made.

There are two other shots, one at Woods Hole and one at Solomons in which the charge is on the bottom and where hydrophone data taken on the bottom are available. These shots are of interest because each one is at critical (nonblowout) depth, and one is almost exactly twice the scale of the other.

```
The data -are as follow:
```

Woods Hole, 300 lbs, depth $20 \mathrm{ft}, \tau^{\prime}=1.33$, critical depth 23 ft

	Duration	Period lst	Amplitude	1 st Crest
Distance	lst Negative	to 2 rid min .	1st min.	to trough

500 ft	4.3 (theory 4.6)	6.2 sec	$-0.8^{\prime \prime}$	$1.4^{\prime \prime}$
1000	4.5 (theory 5.5)	7.1	$-0.3^{\prime \prime}$	$0.7^{\prime \prime}$

Although it was believed at the time that there was good agreement with theory, a calculation based on the (more recent) Kirkwood and Seeger's publication shows that the theory overestimates the amplitudes by 50 to 100%.

Data for the other shot at Solomons (Shot 5) are as follow: $W=2034 \mathrm{lbs}$, depth 40 ft, critical depth $42 \mathrm{ft}, \tau^{\prime}=1.38$
Duration Amplitude Next Positive
Distance lst Negative lst minimum Pressure Ampl.
$771 \mathrm{ft} \quad 7.8 \mathrm{sec} \quad . .94$ inches $\quad 94$

1860
8.5
-3.6
.38

Values for the amplitude of the first minimum computed from Kirkwood and Seeger theory are -2.25 and -.93 inches. Hence in this case the theory overestimates the measured amolitude at both distances by 150\%.

NOTE: For future reference, the surface amplitude on shot 5 is estimated from the hydrophone data as follows:

Trough to
Calc. Surface
Crest Measured Calc. cosh Trough
Dist. Amplitude Velocity Period $\lambda \quad 2 \pi h / \lambda$ to crest

771 ft	$1.88^{\prime \prime}$	$225 \mathrm{ft} / \mathrm{sec} 213 \mathrm{sec}$	325 ft	1.31	.206 ft
1860	.74	$35 \mathrm{ft} / \mathrm{sec} \quad 13.5 \mathrm{sec}$	470	1.14	.070 ft

We conclude tentatively that the penney thecry agrees with Charlesworth's data for 32 -pound charges in free water placed at a depth equal to .6 maximum bubble radius. The Kirkwood and Seeger theory agrees qualitatively but underestimates the initial phases by about 100%. For depths greater than and less than this, the wave amplituder are lower as determined experimentally by Charlesworth. However, for two nonblowout cases (Woods Hole and Shot 5 - Solomons) for charges on the bottom, the Kirkwood and Seeger theory overestimates the waves by a factor of 1.5 to 2.4. A possible conclusion from this is that the presence of the bottom reduces the
wave making potential by more than the factor of two already allowed, i.e., that more energy is used in grinding out a crater in the bottom and further that different types of bottom, i.e., at Woods Hole and at Solomons have different attenuations with the latter being the greater. Unless the wave measuring data themselves are faulty, the difference in bottom attenuation is the only postulate for the inability to scale from one explosion to another similar one.
9. Remarks on Scaling and the Influence of the Bottom

The question may be asked: How does one scale from the Woods' Hole experiment to Solomons' Shot 5? Since for these two explosives the maximum bubble radius was approximately equal to the water depth, there was no blowout and therefore the bore method (which see under "scaling methods" Chapter 5), is inapplicable. However in each we have

$$
L=13.5\left(\frac{W}{D+33}\right)^{1 / 3}
$$

$\mathrm{L}=$ maximum radius of bubble.
$D=$ Depth of charge.

We havt $W_{1}=300 ; D_{1}=20$

$$
W_{2}=2034 ; D_{2}=40
$$

Then $L_{1}=24 ; L_{2}=41$

$$
\frac{\mathrm{D}_{1}}{\mathrm{~L}_{1}}=.8 ; \frac{\mathrm{D}_{2}}{\mathrm{~L}_{2}}=.98
$$

Accordinc to Charlesworth the wave making efficiency is a function of D / L peaking at atout 0.6 and falling off sharply as the charge gets shallower, and gradially as the charge gets deeper. The larger valus of D / L may acsount for some decrease in wave efficiency in the larger explosion. We may expect the wave heights to be proportional to the volume ratio, i.e., $\left(L_{2} / L_{1}\right)^{3}$ and inversely proportionai to the square of the depth at the same scaled listance. (See Equation (5'), Kirkwood and Seeger's paper ${ }^{(6)}$)

$$
\begin{aligned}
& \therefore \quad H_{2}=\frac{5}{4} H_{1} \\
& \text { and } r_{2}=2 \mathrm{~F}_{1} \\
& \therefore \quad H_{2} R_{2}=2.5 H_{1} R_{1}
\end{aligned}
$$

Source	W R			Neg. Ampl.		Ave. $H^{\prime} \mathrm{R}$
				on bottom	$\mathrm{H}^{\prime} \mathrm{R}$	
	1 bs	$f t$	r^{\prime}	H^{\prime}	$f t^{2}$	$f t^{2}$
Woods Hole	300	500	25	. $8^{\text {i }}$	33.2	29
	"	1000	50	.3"	25.0	
Kirkwood \& Seeger	"	500	25	1.2"	50	50
	"	1000	50	$.6^{7}$	50	
Solomons \#5	2034	771	19.3	. 94	60.4	58
"	"	1860	46.6	. 36	55.8	
Kirkwood \& Seeger	"	771	19.3	2.25	145	
"	"	1860	45.6	. 93	145	145

We can say:
(1) Theory overestimates data for 300 lbs by $\frac{50}{29}=1.7$

Theory overestimatee data for 2034 lbs by $\frac{145}{58}=2.5$
(2) Theory scales from 300 to 2034 as $\frac{145}{50}=2.9$
(3) Data scales from 300 to 2034 as $\frac{58}{29}=2.0$
(1) Scaling as in preceding paragraph goes as 2.5
(5) It is inceresting that $\left(\frac{2034}{300}\right)^{\frac{1}{2}}=2.6$

The next paragraph comments on the rationale for $W^{\frac{1}{2}}$ scaling.

It has been noted by Penney ${ }^{(5)}$ that for example if one scales from one small charge to another ct such depths that $D \ll 33$ for both charges, then $L \sim w^{1 / 3}$, depths, distances and wave heights scale as $W^{1 / 3}$. Further, if the charges are large and $D \gg 33$, and if for example the charges are at depths such that $L=D$ or a fixed multiple thereof, then $D^{n} W^{\frac{1}{4}}$, and all dimensions including wave height vary as $W^{\frac{1}{4}}$. All of this follows from the bubble radius formula. Unfortunately in our case, neither of these circumstances existed. It is curious to note that in the breakout case where the bubble cavity is no longer spherical and where the wave heights scaie as $W^{1 / 6}$ from one breakout case to enother (see bore scaling in

Baker chapter), all other dimensions going as $w^{1 / 3}$. the product of HR $\sim W^{1 / 6} W^{1 / 3}=W^{1 / 2}$. This is the same result as for the deep large explosions where $H R \sim W^{1 / 4} W^{1 / 4}=W^{1 / 2}$. The magnitude of the waves will not be the same, presumably the largest ofcuring for cases where $D=.6 L$.

Charlesworth ${ }^{(10)}$ shows data for 2-ounce and 2-pound charges at depths of about . 6 L , (3 feet and 1.2 feet), so that these depths can be neglected compared with 33. Nevertheless he shows the wave heights reduced by $W^{1 / 4}$ rather than by $w^{1 / 3}$.

One infers that the measurements were as follows:

Weight
Wave Height
Distance
HR

2 oz	.416 ft	13.0 ft	$5.41 \mathrm{ft}^{2}$
2 lbs	.59	27.6	16.30

Applying $W^{1 / 3}$ scaling to this the value of $H R$ for 2 pounds inferred from 2 ounces is $5.41 \times(16)^{2 / 3}=34.2$ instead of 16.3 measured. There is no explanation given for this discrepancy, except that Charlesworth notes that the 2 -ounce charges seem to be more efficient wave makers. [$W^{1 / 4}$ scaling gives 21.6 . Closer but not strictly applicable.] We can also compare 32- and 300-pound data
fired at 8-foot depth and at the battom in 16 feet of water, respectively, as quoted by Charlesworth.

We believe the data are:

Weight Wave Height Distance HR

32 lbs	.88 ft	55 ft	48.5 ft
300	1.66	83	138.0

$$
\left(\frac{300}{32}\right)^{1 / 3=2.1 \quad \mathrm{HR}=48.5 \times(2.1)^{2}=214} \begin{gathered}
\text { (compared with } 138 \\
\text { measured) }
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{300}{32}\right)^{\frac{1}{2}}=3.06 \mathrm{HR}=48.5 \times 3.06=149 \text { (compared with } 138 \\
\text { measured) }
\end{gathered}
$$

The $W^{1 / 4}$ scaling from 32 pounds to 300 pounds works better than $W^{1 / 3}$ scaling and perhaps it should since charge depths are not small compared with 33 . It must be remembered that the experimental value
of HR for the charge on the bottom is undoubtedly low. If one were to double it, á la Kirkwood and Seeger, then the cube root scaling would look better.

Again it is forced upon us that a large change in wave making efficiency occurs when the charge interacts with the bottom. The theory is also ambiguous about this. Even the assumption of an equal image source in the assumed rigid bottom is not upheld in the actual situation. We conclude that there is an ambiguity of a factor of two depending on the type of bottom, and how close it is to the charge.

We note in passing that on the Solomons' Shot No. 4 an attempt was made by soundings to determine what had happened to the bottom. The record shows that the water depth at the explosion site was 7 feet greater when probed after the shot. How extensive the bottom crater was or how much work was required to make it are not known.

III ANALYSIS OF SOLOMON'S DATA.

The Solomons' data will be discussed in this chapter under three topics: first, bottom pressure or the magnitude of the first negative phase measured by hydrophone data; second, the auration of the first negative phase; and third, the amplitude of the first negative pulse at the surface, and of the following peak.

1. Bottom Pressure (Nonblowout Case)

The hydrophone data for the 40 -foot site are plotted in Figure 13. The amplitudes for the blowout shots are all about the same, and those for Shot 5 are considerably lower. We shall wish to discuss the blowout and nonblowout cases separately. Figure 14 is a plot of the dimensionless function $G_{0}\left(x^{\prime} \circ\right)$ for various events. These curves are the same for all explosions regardless of depth or size.

The basic Kirkwood and Seeger theory requires the pressure variation on the bottom to be given by

$$
p=\frac{\bar{v}}{2 \pi h^{2}} G_{0, \tau}\left(r^{*}, 0, t^{\prime}\right) \text { feet }
$$

where $h=$ water depth and $\overline{\mathrm{V}}=$ "some average volume for the period $\tau . "$ If the bubble is spherical (charge off the bottom) and of radius $a(t)$ then

$$
\bar{v}=\frac{\int_{0}^{\tau} \frac{4}{3} \pi a^{3} d t}{\tau}
$$

Now if L is the maximum radius of the expanded bubble, then the work done against ambient pressure by the gases requires that L be proportional to the cube root of $\mathrm{W} /(\mathrm{D}+33)$.

The proportionality constant depends on the energy per pound of the explosive and on the fraction of this energy which is retained in the gas globe. We shall take the constant to be equal to 13.5 (W in pounds, D charge depth in feet) which is consistent with 1060 cal/gr explosion energy (1.48×10^{6} foot pounds per pound) and 45% energy remaining in the bubble. Therefore, $L=13.5\left(\frac{W}{D+33}\right)^{1 / 3}$.

Kirkwool and Seeger state that the time average over T of the dimensionless quantity $(a(t) / L)^{3}$ in free water as calculated by Shiffman and Friedman ${ }^{(12)}$ is 0.4819.


```
and Seeger now imply that the volume they are using in the pressure formula is the volume of the bubble associated with the explosion, and that when the explosion is on the bottom the actual volume will be half that for a bubble at the same depth with no bottom present. This is certainly wrong if the bottom is rigid, and may be approximately right if the bottom is mud-deformable and wasteful of energy. At any rate, the \(\overline{\mathrm{V}}\) substituted into the pressure formula is equal to
```

$$
\frac{1}{2} \times \frac{4}{3} \pi \times .4819 \mathrm{~L}^{3}
$$

and then

$$
p=\frac{1}{3} \frac{4819 L^{3}}{h^{2}} G_{o, T^{\prime}}\left(x^{\prime}, 0, t^{\prime}\right) \text { feet }
$$

This should work for a charge on a mud bottom but not blowing out.

It was noted early by R. W. Spitzer ${ }^{(9)}$ that G_{1} min' which is the value of $G_{T},\left(x^{\prime}, 0, t^{\prime}\right)$ at the bottom of the first trough is almost exactly proportional to $\tau^{\prime \prime}$, withough this is necessarily limited to values of T^{\prime} small compared with t^{\prime}, and also typically less than 1 or 1.5 . This proportionality holds at each reduced distance. If the ratio $G_{1} \mathrm{~min}^{\prime} \mathrm{T}^{\prime}$ is plotted against $1 / r^{\prime}$, one obtains a good straight line passing through the origin. Spitzer fits this line with the relation

$$
\frac{G_{1} \min }{T}=\frac{.42}{r^{r}}
$$

Hence,

$$
p_{1 \min }=\frac{\bar{\nabla}}{2 \pi h^{2}} \frac{.42 \tau}{r} \mathrm{ft}=\frac{4.6 \overline{\mathrm{~V}} \mathrm{t}}{\mathrm{rh}^{3 / 2}} \text { inches }
$$

or for charge on the bottom (halving the volume)

$$
P_{1 \mathrm{~min}}=\frac{4.64 \tau L^{3}}{\mathrm{rh}^{3 / 2}} \text { inches }
$$

$$
\text { (provided } \tau^{\prime}<1.5 \text {) }
$$

Values calculated for nonblowout cases are shown in Table 7. The agreement may be said to be fair. If the value of T ' is large, it is necessary to go back to the tables ${ }^{(6 a)}$ and find the value of G_{0}. The value of t is decermined simply from:

$$
T=\frac{4.36 W^{1 / 3}}{(D+33)^{5 / 6}},
$$

$$
\tau^{\prime}=\sqrt{\frac{g}{h}} \tau
$$

Elaborate corrections to τ caused by proximity of the bubble to a rigid plane or a free surface are mostly insignificant and are herein ignored.

We may conclude that for the three nonblowout cases cited, the theory predicts the observed amplitudes to within a factor of two.
3. Bottom Pressure (Blowout Case); Other Estimates of Volume

If there is blowout what should be the value of $\overline{\mathrm{V}}$? it is clear that the blind use of the previcus formula grossly overestimates the bottom pressure because a large part of the

calculated volume is in a sphere or hemisphere which is above the water level. The estimate of the pxoper volume-to-ase is diffieult-It is also necessary to know the cavity volume as a function of time. This will depend in part on whether the explosion products are above or below atmospheric pressure when the breakthrough occurs. As a general rule the explosion products when adiabatically expanded to a radius of ten times the charge radius have reduced their pressure to about one atmosphere. The formation of the bubble will depend on how much work the gases have done when they reach the surface. Calculations of this have shown that most of the kinetic energy which the water will acquire has been imparted in the expansion to the first few charge radii. (For example, at 2 radii 78%, at 3 radii 87%...) It does not appear worth while to pursue this line of reasoning.

However, crudely, one can show the effect of various simplifying assumptions about the volume. Remembering that

$$
p=\frac{\bar{v}}{2 \pi h^{2}} G_{o, \tau}, \mathrm{ft}
$$

we have, as before,

$$
p=p_{1} \text { when } \bar{v}=\bar{v}_{1}=\frac{2}{3} \pi(.4819) L^{3}
$$

(Volume has been reduced by factor of two for charge on bottom.)

If the cavity is a cylinder of radius L and altitude h, then

$$
p=p_{2} \text { when } V=\bar{v}_{2}=\frac{1}{2} \pi(.4819) L^{2} h_{h}
$$

(assuming the same time averaging factor and bottom loss)

If the cavity is a hemisphere with radius equal to h, then

$$
p=p_{3} \text { when } \bar{v}=\bar{v}_{3}=\frac{2}{3} \pi(.4819) h^{3}
$$

Hence,

$$
\frac{P_{2}}{P_{1}}=\frac{3}{4} \frac{h}{L} \text { and } \frac{P_{3}}{p_{1}}=\left(\frac{h}{L}\right)^{3}
$$

In the blowout cases it is necessary to adopt a procedure for estimating τ. The value is taken as the period which would result if the charge were placed at a depth equal to its maximum bubble
radius. τ is computed also using that same value for h, not the actual depth. The critical depth is plotted as a function of w in Figure 15.

The various quantities for the blowout shots are also shown in Table 7.

We conclude that for the one shot (Shot 5) at critical depth, namely for which $L=h$, the theory overestimates the observation by a factor of about $2 b_{2}$. For the three blowout cases the observations lie between the cylinder and the hemisphere predictions. One might suppose therefore that the actual cavity volume is somewhere between the two. The low observations on all the Solomons shots except Shot 6 , whether in blowout or critical mode are possibly attributable to the muddy river bottom at the 40 foot site. Shot 6 is the only one where the observation exceeded the prediction, and also the only one fired in a different location -- somewhere in Chesapeake Bay. If the bottom there was swept clean and was rocky, it is possible that the troublesome factor of two should be restored to the theory in which case we would achieve almost perfect agreement for this shot.
4. The Duration of the First Negative Phase

The duration of first negative is given by examining the sign of G_{τ} (reference 6a) and determining the reduced time, call it τ^{\prime},

FIG. 15 mAX bubBle radius egual to depth.
between the value of t ' when the first zero occurs and the second zero. The reduced value $T^{\prime}=T \sqrt{g} / h$. This time is determined by G and τ and is dependent on W only through the dependence of τ on W. In the case of blowout one suspects that the value of τ to be used depends on how long it takes the cavity to fill in. Such time is probably longer than the bubble oscillation formula gives. Indications of this come from considering the volume flow when a dam breaks. (13) In any case the value of T^{\prime} is very insensitive to charge size or bubble period. In determining the durations we are able to use surface photography as well as hyorophone data. The data show excellent agreement with theory. The first suction duration increases gradually with distance and is quite independent of charge weight.

The Solomons' data are plotted in Figure 16. In Figure 17 are plotted in dimensionless form all negative phase duration data available from the shots discussed in the previous section. Data marked with a H come from the hydrophone records; all other data come from aurface photography. The durations on Shots 5 and 6 which were critical or nonblowout are longer than theory. On the other hand, the woods Hole nonblowout cases have shorter durations than theory. There is no ready explanation for these differences. The dashed curve in Figure 17 represents a visual fit to the calculated duration points. It also coincides with a curve which would represent the calculated durations assuming a fixed value of τ^{\prime} equal to 'ul.0. If the value of T ' obtained from the basic function,
$+0$
DURATION OF
FIRST SUCTION
first suction
SECONDS

WATER DEPTH38-42 FT.
in

$G_{o}\left(x^{\prime}, o, t^{\prime}\right)$, is plotted (call it T_{∞}), we obtain the solid line. This is physically equivalent to letting T' become so large that the $^{\text {s }}$ value of G associated with it is neglected.

The theory can be summarized within one percent over the range of distance r ', from 5 to 50 by the fitted relation,

$$
T_{\infty}=2.43 \mathrm{r}^{1 / 4}
$$

This is the same as $T=.46(r h)^{1 / 4}$ seconds, (r, h in feet). If the charge is small enough there may be no observable waves, yet this relation defines the duration of the first trough even if it cannot be seen.

Taking the calculated duration as a standard, the average percent deviation of observed duration vs. calculated is -8\%, i.e., the calculated is slightly in excess of the observed durations. This agreement is much more satisfactory than the amplitude situation where the uncertainties of each experiment have a much larger influence.

The two previous summaries complete the data and analysis related to mine sweeping applications. In this section the surface waves will be considered which are of interest in connection with very large explosions.

In Figure 18, the surface amplitudes directly observed at Solomons by pole photography are plotted against distance. We have here the first trough followed by the second crest, which is usually larger than the first crest.

In order to calculate these quantities it is necessary to use the function $G_{0}\left(x^{*}, 1, t^{\prime}\right)$, tabulated in reference 6a. The extremes of $G_{0}(\tau=\infty)$ at the surface have been plotted in Figure 19, as well as indications of the value of G_{0} when $\tau^{\prime}=1.5$. For the three plotted shots in Figure 18, the values of τ are $2.1,3.1$ and 3.9. These G values as well as the observed and calculated amplitudes are shown in Table 8. The functions for $\tau=\infty$ have been used for estimating amplitudes.

As before ($p .68$), we have, charge on bottom,
inches

FIG. 18 SURFACE AMPLITUDE VS. DISTANCE

$$
p_{1 \min }=1.92 \frac{L^{3}}{h^{2}} G(1 \text { min }) \text { inches }
$$

and

$$
p_{2 \text { max }}=1.92 \frac{\mathrm{~L}^{3}}{\mathrm{~h}^{2}} G_{(2 \max)} \text { inches. }
$$

We find as before that this calculation for the blowout cases grossly overestimates the amplitudes of the surface waves. If we reduce these in the ratio of $(h / L)^{3}$ corresponding to the hemispherical bubble, the resulting amplitudes are too small by a factor of 2 or 3 . We shall see in the final chapter that the cylindrical assumption is a near approximation for blowout vases.

Shot	Table 8 Surface Amplitudes from Pole Photography observed						Calculatéd	
	$\mathrm{r}_{\text {ft Trough in. }}^{\substack{\text { Firster frough int } \\ \text { Tr }}}$			${ }^{\prime}$	$\begin{gathered} \text { First min } \\ G_{0}\left(r^{\prime}, 1\right) \\ \tau=\infty \\ \hline \end{gathered}$	$\begin{gathered} \text { Second mas } \\ G_{0}\left(r^{\prime}, 1\right) \end{gathered}$	$\mathrm{p}_{1} \min _{\text {p }} \mathrm{p}_{2}$ maxinches inches	
	419	-12	7.0	11.2	-. 085	$+.065$	-27.4	21
${ }^{2}$ at 37.5 ft	581	-3.6	4.8	15.5	-. 066	.050	-20 -13	16
6724 ibs	895	-5.1	4.8	23.9	-. 040	. 029	-13	9.3
$\mathrm{L}=6 \mathrm{I} .6 \mathrm{ft}$	1007	-4.0	4.0	26.9	-. 036	. 045	-65	51
3	659	-11.0	15.4	16.9	-. 058	. 038	-53	43
at 39 ft	801	-7.0	12.0	20.5	-. 044	. 032	-45	36
23,534 lbs	928	-7.0	11.5	23.8	-.040 -.036	. 029	-41	33
$\mathrm{L}=96.5 \mathrm{ft}$	1048	-6.5	13.0	26.9	-. 036	. 038	-80	66
4	879	-9.0	32.0	20.9	-. 046	. 032	-70	56
at 42 ft	1028	-6.6	11.5	24.5 27.9	-. -.035	. 028	-61	49
46,000 lbs	1170	-8.0	12.0	27.9	-. -.027	. 020	-47	35
$\mathrm{L}=115.0$	1579	-4.5	5.5	51.0	-. 021	. 016	-37	28
	2140	-5.0	6.6 5.0	56	-. 021	. 016	-37	28

IV THE BAKER SHOT AT BIKINI

1. Introduction

On July 25,1946 (local date) a nominal 20 kiloton komb was exploded at mid-depth in 180 feet of water in Bikini lagoon. A. question of intense interest was what sort of waves would be produced and how big would they be. Estimates and predictions were made by many of the participants using different methods. The sources of uncertainty as we have seen were many. For example, the Kirkwood and Seeger theory did not apply directly to the blowout case, and it was not clear how one should correct for this. Another problem was how to scale up small explosions to big ones. The charge size was so large that an uncertainty between using say $W^{1 / 3}$ and $W^{1 / 4}$ reaulted in a factor of $W^{1 / 12}$ or 4.3 in predicted wave height. And finally the various small scale experiments done at different depths and in different places were difficult to compare. In view of this it was necessary to take certain risks in the placement of instruments and cameras, balancing the chance of getting insufficient data againgt the chanc of being wiped out. The easy solution of course was to cover all possibilities, but then the costs became higher.

2. Penney's Bore Theory

On July 24, 1946, W. G. Penney prepared a memorandum in which he proposed a new mechanism for explosive wave making in shallow water, derived a new scaling law for such cases and predicted the Baker wave heights by scaling up relevant small scale experiments, making predictions which turned out to be nearly exact. His own statement is so concise that I quote from it:

Abstract

"Theories of the wave forming mechanism of explosions below the water surface are not entirely convincing nor do they give a good description of the waves in the early breaking stage.

Visual observation and photographic studies suggest that the mechanism for an explosion near the surface is that a volume of water is hurled away from the charge, a wall of outwardly moving broken water progressively sweeps up the still water just outside; the height of this "wall" or "bore" decreases quite quickly and degenerates into a wave. Soon, by the normal processes of dispersion of cylindrically expanding waves from a finite central disturbed area, a wave train is established. The suggestion is made here that the wave train is caused by the cylindrical bore. This is in contrast to earlier theories which attributed the waves to the filling in of a cavity and the subsequent palsations of the water surface. While the later waves may have their origin in such a cause, the first two waves, which on the scale of charges of 2000
lbs or less, are much the greatest, leave the center well before tr: return flow to the center has developed.

The model proposed here has a scaling law different from that of the reflux to the crater, and the wave heights calculated on the "cylindrical bore" model are much smaller than those on the cavity model. Possibly, the implication is that the crater waves, which come later, perhaps waves number 4, 5, at one mile from the Bakex atomic bomb at Bikini will be larger, say by a factor 2 or 3 than the earlier ones. [Note, they weren't].

T: 2 "cylindrical bore" model assumes that the explosion of a mass of explosive W removes some water into the air and gives to an annulus of water still in the main body of water an outward impulse. This water then establishes a bore which picks up still water, thus reducing the mass velocity of the bore, and hence its height. The bore degenerates into waves, by the mechanism of the Cauchy-poisson generation of surface waves from a distribution of surface elevation and impulse."

The situation is depicted as follows:

This together with the conservation of momentum gives

$$
U=\sqrt{\frac{g(D+H)(2 D+H)}{2 D}}
$$

Abstract

Note that if $H \ll D$, this reduces to $U_{0}=\sqrt{g D}$. If H is not negligible, then $U>U_{0}$. It may be shown that as long as H is not negligible, the bore provides a mechanism for energy dissipation.

Suppose two explosions are made with charges W and W_{1} where $W=$ $n^{3} W_{1}$ and linear dimensions, depth of water, depth of charge, horizontal radius to any observation point are all chosen in the ratio n to 1. At corresponding points and times the particle velocities must be equal. That is $u(R, t)=u_{1}\left(R_{1}, t_{1}\right)$.

Since $u=H \sqrt{\frac{g(2 D+H)}{2 D(D+H)}}$
we have

$$
H=H_{1} \sqrt{\frac{\left(2 D_{1}+H_{1}\right) D(D+H)}{(2 D+H) \frac{D_{1}\left(D_{1}+H_{1}\right)}{}}}
$$

$$
H=\sqrt{n} H_{1} \sqrt{\left(\frac{2 D_{1}+H_{1}}{D_{1}+H_{1}}\right)\left(\frac{n D_{1}+H}{2 n D_{1}+H}\right)}
$$

This is an equation for H convenient for iteration. The approximate solution, holding well for H and H_{1} small compared with D_{1}, is

$$
\mathrm{H}=\sqrt{\mathrm{n}} \mathrm{H}_{1}
$$

Hence, the bore heights (and consequently wave heights at all distances) are in the ratio of $\sqrt{n}, i . e ., W^{1 / 6}$.

3. An Energy Argument

A rather simpler argument based on energy conservation indicates the same conclusion for wave height scaling. Consider a subsequent single wave of height H_{1} emanating from the original bore formation. Its potential energy is proportional to $\lambda_{1} R_{1} H_{1}^{2}$ where λ_{1} is the "wavelength" and R_{1} is the distance from the explosion. This energy is proportional to W_{1}. If we move to another scale, we must have

$$
\frac{\lambda}{\lambda_{1}} \frac{\mathrm{R}}{\mathrm{R}_{1}} \frac{\mathrm{H}^{2}}{\mathrm{H}_{1}^{2}}=\mathrm{n}^{3}
$$

If now $\frac{\lambda}{\lambda_{1}}=n_{1}$ since $\frac{R}{R_{1}}=n_{r}$, we have $\frac{H}{H_{1}}=\sqrt{n}$. There are two cases to be distinguished. If the wavelengtin is small compared with the depth, then the medium is dispersive and the value of λ increases with R on a given scale. In this case assuming $\lambda \sim R$, we have

$$
\frac{\mathrm{HR}}{\mathrm{H}_{1} \mathrm{R}_{1}}=\mathrm{n}^{3 / 2} .
$$

If the wavelength is long compared with the depth, then the medium is nondispersive and the value of λ is constant $a s R$ increases on a given scale. In this case, we have

$$
\frac{\mathrm{H}^{2} \mathrm{R}}{\mathrm{H}_{1}^{2} \mathrm{R}_{1}}=\mathrm{n}^{2}
$$

Cylindrical waves from explosions start out in the dispersive mode. As we shall see the Baker data fit the dispersive mode, since HR is constant rather than $A \sqrt{R}$.

The great advantage of the foregoing considerations is that one can go from one scale to another without having a detailed view of the phenomena which are taking place. If we are fortunate enough to have an experiment that is scaled to the event which it is desired to simulate, then predictions can be made easily. In the case of Bikini Baker there were two sets of experiments which had been scaled to the event. These are referred to as the NEL data, (14) and the 0^{\prime} Brien data ${ }^{(15)}$. The bore height quoted in Table 9 refers to the wave height above the undisturbed level. It is therefore necessary to double this value in order to make comparison with the wave measurements at Baker. Doubling is only approximately correct, since in many cases the crest is not equal to the following trough.

The Bikini Baker wave measurements are summarized as follows in "The Effects of Atomic Weapons" p. 99 ${ }^{(16)}$. They are quoted only as crest to trough heights.

Let $H=\max$ height in feet from crest to following trough and $R=$ distance from the explosion in feet. Then the Baker data fit the following relation.

$$
\mathrm{HR}=94,000 \text {, within } 8000 \text { feet. }
$$

This will be presumed to be the best fit for all data obtained at these distances. fBeyond 8000 feet the empirical equation (HR) 9 . $=$ 42,700 is given.]

The explosion at Baker occurred in 180 feet of water at mid-depth. The equivalent charge radius was 45 feet and so the water was presumably completely removed just as if the charge had been on the bottom. In fact it is possible that a greater fraction of the charge energy went into wave making than if it had been resting on the bottom (because of less damage to the bottom). This consideration, however, will be ignored, and we will assume that a high explosive scaled experiment with the charge on the bottom is equivalent to one with the charge at mid depth. In either case the water is completely removed from a cylindrical volume surrounding the charge. In the scaled NEL * O'Brien experiments quoted, it is not positively stated whether the charges were on the bottom, but it is assumed that they were. The information is summarized in Table 9.

Original Data Scaled To 20 kt

Source	W_{1}	\mathbf{D}_{1} charge	$\begin{gathered} \mathrm{D}_{1} \\ \text { water } \end{gathered}$	$\begin{aligned} & R_{1} \\ & \mathrm{ft} \end{aligned}$	H_{1}^{1} inch	n	D ft	R ft	$H^{\mathbf{1}}$ Et	RH^{1}
NEL	2040	83								
	1bs.	inch	same	161	24	27	187	4350	10.4	45,250.
	278	40.5	"	82	15.5	52.4	177	4300	9.4	40,500.
	44	23	n	46	12.5	95.5	183	4400	10.2	45,000.
O'Brien	1000.	60	"	330	9.6	34.2	171	11300	4.67	52,500.

These shots were at a depth of four charge radii. In the absence of definite information it will be assumed that the charges were on the bottom. The nature of the bottom is not known and presumably would make a difference, that is, a rocivy hard bottom would not absorb energy as much as a soft mud bottom and would therefore make for larger waves. Furthermore, the positive phase height is quoted, H_{1}^{1}, and we are forced to double it to compare with the Baker quoted value which goes from crest to trough. It is clear however that the in terms of charge radii, and are in the blowout region where the bubble radius formula does not apply. Hence all dimensions are scaled as $n=\left(\frac{W}{W_{1}}\right)^{1 / 3}$ and wave heights are scaled as \sqrt{n}. This produces for the NEL average $H R=87,200$ and for $O^{\prime} B r i e n, H R=$ 105,000. The corresponding measurement for Baker is $H R=94,000$. This agreement can be taken to mean the nuclear explosion underwater behaves like a conventional explosion of the same yield, as far as mechanical effects at a distance are concerned. It may also be assumed that the mid depth explosion of a nuclear bomb in such shallow water resolves itself into the same situation as a high explosive of the same energy sitting on the bottom. There also may be a compensating effect i.e., that the nuclear explosion at 2 equivalent charge radii from the surface lost the same fractional energy to the atmosphere that the high explosive at the depth of 4 charge radii lost to the bottom in making a crater. In this way the scaling up of the high explosive experiment leads to a correct prediction of the nuclear experiment in this very shallow situation. The agreement of prediction wi:h later observation within 2% is truly remarkable.
5. A Speculative Adjustment to Make Scaling Applicable

We have seen that the "bore" scaling works well when the dimensions of the experiment are in scale. If, however, we apply "bore" scaling to say shot 4 of the Solomons' data, where $n=9.3$,
we find that the predicted wave heights are too gmall and the depth is too large. That is, the scaled up depth is 370 feet and the average value of $H R$ is 4900 (crest to trough). If the same weight had been fired at Solomons' in 20 feet of water, then the scaled up depth would have been 185 feet and presumably (except for mud absorption) the height-distance product would have been larger. This in fact seems backward, that by decreasing the depth we would expect an increase in wave height. There may be a physical reason for a possible effect of this sort within limits of course. It is related to the behavior of the gases as they escape from the water in the shallow explosion case. In brief, if the explosion is deep, the gases have to work against the static pressure including the atmosphere. If the explosion is shallow, the work against the atmosphere is cancelled when the gases break out. If a large fraction of the available energy has been converted (i.e., if the explosion is not too shallow to kinetic energy in the water, then it is possible that a cavity can be formed with a larger radius than L. The range of depths of charge within which this is possible is quite small, probably between two and about eight charge radii. Such a larger cavity would produce a higher bore and a larger wave.

To review, if there is no biowout, the maximum bubble size is determined by the work done against the total hydrostatic pressure including atmospheric.

The pressure inside the bubble at its maximum size is very low, perhaps . 1 atm. In the case of blowout the pressure inside the cavity at some stage in the expansion phase becomes atmospheric. Consequently, the expansion can proceed without doing any work against the atmosphere. The resulting size of the crater will then depend on how much kinetic energy the water was able to absorb before blowout.

```
Let L = max radius in feet.
```

Experimental data on periods show that 45% of the energy remains in the bubble. Then,

$$
L=13.5\left(\frac{W}{D_{C}+33}\right)^{1 / 3}
$$

where $D_{C}=$ depth of charge below surface.

$$
\text { Let } n^{3}=\frac{W}{W_{1}}=\frac{L^{3}}{L_{1}^{3}} \frac{D_{c}+33}{D_{C_{1}}+33} \text { (for no blowout) }
$$

For the blowout case we have $L>D_{c}$. Let $D=$ depth of water. We wish to estimate the maximum crater radius, a. The work done to produce the crater and the elevated annulus is $\rho g \pi a^{2} D \frac{D+C}{2}$
where C is the height of the annulus above sea level. This work is equal to that part of the explosion energy not sent off in the shockwave. If the explosion is deep enough to allow the underwater shock to be formed - say two charge radii or more, then we can assume that 45% of the energy is available for crater formation. This energy is imparted very early to the water as kinetic energy. Hence, try writing

$$
\rho g \pi a^{2} D \frac{D+C}{2}=.45 \mathrm{~W} \times 1.48 \times 10^{6}
$$

In the above $\rho=2, g=32$.

$$
a^{2} p(D+C)=6650 w
$$

If $D>C$, we may approximate a by

$$
a=\sqrt{\frac{66.50 W^{1 / 2}}{D}}=81.5 \frac{W^{\frac{1}{2}}}{D}
$$

If on the other hand C is of the order of D, then $a=57 \frac{W^{\frac{1}{2}}}{D}$. Values of a obtained from either of these relations for small values of D are of course too large to represent any real cavity radius. In fact, they suggest that the value of energy assigned to
the crater formation is much too large, recalling that not 45% of the explosive energy shows up in waves but only perhaps $1 / 100$ of that. Nevertheless, the temptation is strong to believe that if we change the depth of this shot from 40 feet to 20 feet, whatever the value of a was will increase by a factor of two. Hence, the volume removed from the crater will be greater by a factor of two becaase volume is proportional to a^{2} times depth. If the energy available for waves is likewise doubled, the wave heights at the same distance would then increase by $\sqrt{2}$. We infer that if we had fired the 46,000 lbs in 20 feet instead of 40 feet the HR product could have been 2460 instead of 1740 , and the scaled up value from this would be $H R=70,000$ for 20 kt in 180 feet of water.

It must be admitted that this is pure speculation, and that a scruting of Charlesworth's shallow data does not confirm the notion.

Whatever the merits of this discussion it is clear that there is a change of regime when charge depth is grogressively leas than the critical depth. The cavity changes from an expanding sphere to an expanding ring of some sort. In the first case one can scale from one size to another and we will have $L \sim n^{2 / 3}$ (for $D \gg 33$) or L $\sim n$ ifor $D \ll 33)$. In the second case the radius of the cylindrical cavity will scale as $n^{1 / 2}$.

```
6. Use of Kirkwood and Seeger's theory To Make Adjustments
```

Another way to adjust the data of a given shot to conditions from which bore scaling may be done is to use the kirkwooa and seegex theory. In other words, if for Shot 4 (Solomons) the value of HR is 1740, what should it be if the same weight were exploded in 20 feet of water instead of 40 feet?

We know that

$$
H \bumpeq \frac{\bar{V} G}{D^{2}}
$$

Using the cylindrical model we have $\vec{V} \sim L^{2} D$.

Hence. $\quad H_{20}=\frac{L_{20}^{2}}{D_{20}} \frac{L_{40}}{L_{40}^{2}} \frac{G_{20}}{G_{40}}$

The value of L_{40} for this shot is 116 feet, $L_{20}=127$. At a given distance, say $R=1000$ feet, in the original shot, $r^{1}=\frac{1000}{40}=$ 25; whereas if the depth is only 20 feet, then we must evaluate the G function at $r^{1}=50$. Since H is the sum of the first trough and the next crest, we must find the G values for these, for $r^{1}=25$ and $r^{2}=50$. Fortunately, the tables exist for just these values. We find,
$G_{40}: G_{0}(25,1)_{1 \min }=-.0400 ; G_{0}(25,1)_{2 \max }=.0318$
$G_{20}: G_{0}(50,1)_{1 \min }=-.0207 ; G_{0}(50,1)_{2 \max }=.0169$

Hence,

$$
\mathrm{H}_{20}=\mathrm{H}_{40}\left(\frac{127}{116}\right)^{2} \frac{40}{20} \frac{.0207+.0169}{.0400+.0318}
$$

$$
\mathrm{H}_{20}=\mathrm{H}_{40} \times 1.26
$$

We conclude that if the same charge had been fired in 20 feet of water the waves would have been 26% higher at the same distance. Hence the value of HR would be 2190 feet 2 and the corresponding bore scaled prediction for Baker would be $2190 \times \mathrm{n}^{3 / 2}=62,000$.

This result is fairly close to the preceding estimate. Both depend on guesses as to the proper valve of volume to use. The beauty of a properly scaled experiment is that all such speculations are avoided. It is nevertheless unfortunately necessary to have to make such deductions in the absence of scalable data.

Abstract

"The Effects of Atomic Weapons" (16) , p. 40, states that the greatest radius of the "plume" at Baker was 1000 feet. The plume is described as the entrained water which was propelled upward by the escaping gases (mostly steam) from the explosion itself. The plume overtook and exceeded the spray dome at a height "of a few thousand feet." The spray dome, caused by the reflection of the underwater shock wave from the water surface, had a radius probably less than 1000 feet. Its radius estimated from dome formation investigation (Effects p. 97) is about 800 feet. The radius at which the dome degenerates into the travelling slick is of course not precisely determined. The base surge appeared at a radius of 1230 feet at 10 seconds after the burst (Effects p. 106). The expression for spherical bubble radius (Section 5) gives a value of $L=930$ feet which is curiously of the same magnitude as the plume or column diameter. Although this formula (for L) does not apply to the blowout case, it appears to give a reasonable estimate of the cavity radius which was presumably less than the plume radi's but must have been considerably more than the depth. There is another clue to the possible estimation of the maximum cavity size. The bubble period for the nonblowout case is given by

$$
\tau=\frac{4.35 W^{1 / 3}}{(D+33)^{5 / 6}} \mathrm{sec} .
$$

where D. depth os charge below surface.

In case of blowout, use this to estimate time for bubble to reach its masimum radius. This time should be approximately $\tau / 2$. The filling of the cavity is by a different process (similar to the breaking of a dam).

In the case of Baker,

$$
\frac{T}{2}=13.6 \mathrm{sec}
$$

This is about the time of maximum diameter of the wacer column. See P. 104 of Effects of Atomic Weapons. In other words, the maximum diameter of column occurs at approximately the same time and in the same size as is calculated from the nonblowout formulae. This may be due to the fact that a large transfer of energy to the water occurs in the very early stages of the explosion expansion. The subsequent size of the bubble is determined by expansion against ambient pressure. It is possible that the energy communicated to the water in the shallow cases is less than in the deep cases because of blowout, but that the ambien pressure against which the expansion occurs is less because of the shallower head of water, and because there is no work done against the atmosphere as there is in the self contained (deep) case. Consequently these effects are
contrary and compensating so that the apparent agreement in the Baker case between the deep formulae prediceions and the observations is better than one would originally have guessed.

B. Other Baker Predictions

We have found elsewhere that the Kirkwood and Seeger theory over estimates by 100% the single observation to which it applies, namely a nonblowout (critical depth) experiment done in midwater (not on the bottom) by Charlesworth using a 32-pound charge. In predicting wave heights for Baker, Kirkwood and Seeger in a memorandum to o'Brien, dated 29 June 1946 , overestimated the wave heights by a factor of 6 to 8 at distances between 5000 and 10,000 feet. If in their prediction they used the final formula of their later paper, they overestimated the source volume, by a factor of about 7 , i.e., the ratio of $4 / 3 \pi L^{3}$ to $\pi L^{2} D$. A new calculation based on their subsequent paper overestimates the trough to crest wave height by a factor of 12. It is not known how the volume was estimated.

In this chapter we shall summarize the data, discuss the scaling and review the procedure for estimating waves for a given situation.

1. Data Summary

We have seen first that the wave height (trough to crest) multiplied by the distance is a constant for a given explosion provided we are not too far away. At great enough distance we expect that $H R$ will be constant. Table 10 shows the HR values observed for the three Solomon's shots where surfaca measurements were made.

Table 11 shows averaged products of wave height x distance for all data previously discussed. Figure 20 represents the data scaled up in all cases by simply multiply the measured $H \times R$ by $\sqrt{\frac{40 \times 10^{6}}{W}}$.

As we have seen this works for different reasons for both blowout and deep shots. It seems that the blowout data obtained for freewater explosions and for bottom shots (Solomons) corrected to

The following table shows the constancy of HR for each of the three Solomons shots:

Trough to

Crest Height $\quad \mathrm{HR}$ Avg. values
Shot No. Rft. inches inch ft. RH (ft ${ }^{2}$)

2.	419	19	7950	
	581	8.4	4900	630
895	10.0	8950		
	1007	7.4	7450	
4.	659	26.5	17500	
	801	19.0	15200	1470
	928	18.5	17200	
	1048	19.5	20500	
	879	21	18500	
	1028	20	20600	
	1170	20	23400	1740
	21479	10	15790	
	2363	11.5	24600	
	9.5	22400		

Table 11 Data Sumary: Wave Height \times Distance, All Shots

cases (for which the formula strictly does not apply but gives a good estimate).
3AVM 30vigins

- ON MUD BOTTOM S=SOLOMONS
O IN FREE WATER, C=CHARLESWORTH
\times PROBABLY ON BOTTOM, PROBABLY SAND
T CYLINDRICAL THEORY.
$\cos -]^{i n}$
free water all give a value of between 80,000 and 90,000 feet ${ }^{2}$ when scaled up to Baker.

An estimate is made using the Kirkwood and Seeger theory with cylindrical volume calculation for the three Solomons' shots that were blowouts, i.e., for which L>D. We have:

			Theory*	Theory		
			HR(spherical	HR	Measured	
Shot No.	L	$\frac{4}{3} \frac{\mathrm{~L}}{\mathrm{D}}$	volume)	cylindrical	HR	Ratio
2	61.6	2.0	$1820 \mathrm{ft}^{2}$	910	630	1.44
3	96.5	3.2	6500	2040.	1470.	1.38
4	115.0	4.0	11600.	2900.	1740.	1.67

*From Table 8 calculated values.

It can be seen that the cylindrical volume overestimates the results by only 38 to 67\%. Perhaps these remaining differences can be attributed to the uncertainties of the mud bottom. If that were assumed, for example, then one could claim that the blow out results should be given by the cylindrical theory. Then for Baker scale the HR values for Shots 2, 3, and 4 if they had been done at middepth should be $71,000,84,000$ and 82,000 . The nonblowout, bottom, shots give a mean value of about 30,000 . The conclusion is indicated that charges on the bottom even at optimum depth produce waves which are
$1 / 2$ to $1 / 3$ the height of waves produced by the same charges off the bottom in the same water depth.

2. Kirkwood and Seeger Summary

According to Kirkwood and Seeger, the amplitude of a wave is equal to $\frac{1}{2 \pi h^{2}} \overline{\mathrm{~V}} \times$ related G value.
$\overline{\mathrm{V}}$ is the time average of the bubble volume.

For deep explosions not on the bottom,

$$
\overline{\mathrm{V}}=\frac{4}{3} \pi(.4819) \mathrm{L}^{3}
$$

where

$$
\begin{gathered}
\overline{a^{3}(t)}=.4819 \mathrm{~L}^{3} \\
\therefore \text { Amp }=.321 \frac{\mathrm{~L}^{3}}{\mathrm{~h}^{2}} G \mathrm{ft} .
\end{gathered}
$$

For nonblowout explosions on the bottom, Kirkwood and Seeger say that the value of $\overline{\mathrm{V}}$ to use in calculating amplitude is half as
large, i.e. $\frac{2}{3}$ 开 $(.4819) \mathrm{H}^{3}$: Hence for charge on the bottom the amplitude is

$$
\operatorname{amp}=.1606 \frac{\mathrm{~L}^{3}}{\mathrm{~h}^{2}} \mathrm{G} \mathrm{ft}
$$

If charge is at a blowout depth but not on the bottom, "a better approximation is the volume of a cylinder if a height equal to the depth of the water and a radius slightly less than the maximum spherical globe in an unbounded liquid," (6). Actually one should consider the time average of the volume averaged over its life. This is hard to do in the blowout case because we don't know the volume mode of expansion or collapse. At any rate take the volume expression as $\overline{\mathrm{V}}=\pi \mathrm{h} \overline{\mathrm{L}}^{2}$. If $\mathrm{L} \sim \sin \omega \mathrm{t}$ for example, then $\overline{\mathrm{V}}=.5$ $\pi \mathrm{nL}^{2}$. One could take this time average factor to be the same, i.e., 4819. If the charge is on the bottom one could, to be consistent with the previous calculation, assert that the volume was half what it would be if the charge were at the same depth in deep water.

Then

$$
\bar{V}=.4819 \frac{\pi h x^{2}}{2}
$$

and

> amp $=\frac{1}{2 \pi h^{2}}-4819 \frac{\pi L^{2}}{2} G \%$
> Half cylindrical on bottom.
also

$$
\text { amp }=\frac{1}{2 \pi h^{2}} \frac{2}{3} \pi .4819 \mathrm{~L}^{3} \mathrm{G} ;
$$

Half spherical on bottom.

Ratio $\frac{\text { spherical }}{\text { Cylindrical }}=\frac{2}{3} \frac{\mathrm{~L}^{3}}{\left(\frac{h}{2}\right) \mathrm{L}^{2}}=\frac{4}{3} \frac{\mathrm{~L}}{\mathrm{~h}}$

The volume for Baker and hence the predicted wave height is overestimated by a factor of $7(\mathrm{~h}=180, \mathrm{~L}=930$) by using the spherical rather than the cylindrical expression.
3. Scaling (Impulsive, Bore, Deep, Blowout)

Surface waves in water are a gravity controlled phenomenon. When we change from one scale to another, for example by shosing a different charge weight, the value of gravity is unchanged. The linear dimensions change in the ratio of $n=\left(\frac{W}{W_{1}}\right)^{1 / 3}$. This
includes the charge radius, charge depth; water depth, and distarice. Time however goes as \sqrt{n} in order for g to remain constant from one scale to ansther. This requires wave velocity to scale as \sqrt{n}. Wave displacement and the particle velocity associated with it, however, may have various scaling laws depending on the method of wave formation. To see how this comes about let us start with the case of waves produced by a downward impulsive loading of the water surface (such as would be caused by an airburst over water). It has been shown by the Applied Mathematical Group N.Y.U. (~ 1946), by Penney (Gravity Waves, etc.) that the wave amplitude in this case is proportional to the sixth root of the charge weight latio. This can be illuminated by the following simplified argument. Let the vertical wave displacement be represented by $\eta=A \sin w$. The particle velocity then is $\dot{\eta}=A \omega$ cos ωt. On the two scales these velocities are equal. This is because the impulse to an area varies as n^{3} and the mass of vater affected also varies as n^{3}. Hence all initial velocities are the same. Note that for the initial loading phase gravity is not a part of the process and time scales in the same manner as distance. It is for this reason that the initial particle velocity acquired by the water is the same on all scales. Returning, then, to the ensuing wave notion we have,

$$
A_{n} \omega_{n}=A \omega
$$

The wave velccity is proportional to $\sqrt{\text { Depth }}$, gravity being weinanging, and hence scales as n. Hence it follows that time must عcir as \sqrt{n}. Therefore, w scales as $\frac{1}{\sqrt{n}}$ and from the above relation L scales as \sqrt{n}. Note that wave velocity being proportional to wavelength times frequency requires that λ scale as n. Therefore, all lengths scale as n except the wave height which goes as \sqrt{n} or $W^{1 / 6}$. It is this very fact which allows the particle velocities on different scales to be equal, since time also scales as \sqrt{n}. For the case of impulsive loading, if the charge weight is increased the wave amplitude increases as the square root of the linear dimension or the sixth root of the charge weight.

If we now put the charge into the water in a blowout position, we see that the bore forming mechanism is somewhat analogous to the previous instance except that the loading is horizontal instead of vertical. Water is pushed outward by the explosion gases, and the outward velocity impulsively acquired is the same on the different scales. This outward movement causes the bore front to form in the same fashion as a shock front forms in a shock tube. The conservation laws (mass and momentum only) applied to this formation require the bore height and hence ensuing wave heights to vary as \sqrt{n}, when we go from one scale to another. After the wave system is formed, time scales as the square root of the linear scale factor as is generally required for all gravity waves. heights should change when charge weight is changed from one nonblowout case to another. We take the Kirkwood and Seeger theory to be a valid expression for wave height for this situation and can write

$$
\text { Amplitude } \frac{\bar{V}}{h^{2}} x \text { related } G \text { function } \sim \frac{L^{3} G}{h^{2}} \sim \frac{W G T\left(r^{1}, z^{1}, t^{1}\right)}{h^{2}(D+33)}
$$

If we change charge weight, G is unchanged except for the effect of W on τ. Consider the critical case in which $L=D$ and, in addition, they both are large compared with 33. Then $L^{3} D \sim W$ or $D^{4} \sim W$ and D $\because W^{1 / 4}$ or $n^{3 / 4}$. Let m be proportional to $W^{1 / 4}$. If depth is scaled according to m, time as \sqrt{m}, wave velocity as \sqrt{m}, distance as m, then,

Amplitude $\sim m$.

We have seen that if the charges are not too large, i.e., the value of ${ }^{1}$ is limited (less than about 2), then the G function at a given distance is proportional to T^{1}. G is also inversely proportional to r^{l}. This leads to an expression for wave height such that

$$
\mathrm{H} N \frac{\bar{V}}{h^{2}} \frac{\mathrm{t}^{1}}{r^{1}}
$$

since $\tau^{1} \sim \sqrt{\frac{g}{h}} \frac{W^{1 / 3}}{(D+33)^{5 / 6}}$, we find that
$H r n m^{2}$ and wave heights vary as $m=W^{1 / 4}$ at corresponding distances for deep explosions (neglecting 33 compared with D) where W is of the order of one ton or less. All distances scale as $W^{1 / 4}$ and time scales as $W^{1 / 8}$.

Jet us now look at the blowout case or the relatively shallow explosion in which the spherical bubble volume is to be replaced by a cylindrical crater of radius L and depth h. In this case for large charges we have

$$
\text { amplitude } \sim \frac{w^{2 / 3}}{h(D+33)^{2 / 3}} G
$$

If G is unchanged, i.e., if τ is very large ard if $D \gg 33$, then

$$
\text { according to this, the amplitude } v \frac{n^{2}}{n \cdot n^{2 / 3}}=n^{1 / 3} \text {. }
$$

These relations are incorrect since they are at variance with bore scaling which is quite straightforward. They fail because the whole postulate of a simple spherical source assumed in the Kirkwood and Seeger development is invalidated by the interference of surface and bottom in the blowout case. The bore scaling does not describe the wave forming process; it merely identifies corresponding situations and lets whatever happens on one scale repeat itself on another. The Kirkwood and Seeger scaling for the deep explosion or explosion at critical depth predicting wave heights as $w^{1 / 4}$ at corresponding $W^{1 / 4}$ distances should be correct. We note that the cylindrical formula is consistent with wave heights and distances scaling as $W^{1 / 4}$. However, as the depth is diminished, we expect to go over to the bore scaling regime, and the cylindrical formula does not give any indication as to what depth at which this occurs. It is impossible to scale from a nonblowout case to a blowout case or vice versa.

Scaling may then be done from one blowout case to another, scaling wave heights as $W^{1 / 6}$, other distances as $W^{1 / 3}$ and time as $W^{1 / 6}$. Scaling may also be done from nonblowout to nonblowout, scaling wave heights as $W^{1 / 4}$, other distances as $w^{1 / 4}$, and time as $W^{1 / 8}$. Wave velocity in the one case, goes as $W^{1 / 6}$ and in the other as $W^{1 / 8}$.

4. Energy Consideráion for Deep or Shallow Scaling

The potential energy of a cylindrically spreading wave is proportional to the wavelength, the distance from the center and the square of the wave height. This quantity should therefore be proportional to the charge weight.

Hence in all cases $W \sim r \lambda_{0} H^{2}$ initially. Now with bore or impulsing loading scaling we have $r \sim \lambda_{0} \sim n \sim W^{1 / 3} ; H \sim \sqrt{\pi} \sim W^{1 / 6}$. With deep explosion scaling we have $r \sim \lambda_{0} \sim H \sim w^{1 / 4}$. The interesting thing is that in either case we have rH $\sim W^{1 / 2}$. This makes it possible to compare the shallow and deep cases at the same charge level simply by using $W^{1 / 2}$ for the product.

If the wavelength is sufficiently long that there is no dispersion, then λ_{0} is independent of r. If there is dispersion, then $\lambda_{0}=$ const x r. In one case $H \sqrt{r}$ is constant for a given explosion. In the other, HR is constant. We have seen that in the early stages of explosive wave making the waves are short enough for dispersion to occur. Later, the waves attenuate so that if they achieve a constant wavelength, they may be too small to measure. Whether there is or is not dispersion makes no difference to the scaling laws which are determined by the wave formation process.

Knowing the charge weight, depth and water depth how can the waves resulting from an explosion be predicted? The first step is to compute L and determine whether the explosion is in the blowout region or not. Figure 21 illustrates the two regimes and shows the appropriate formula. If the explosion is in the blowout region, determine the value of the HR product in feet by multiplying 13.5 by the square root of the charge weight in lbs. [This comes from Figure 20 where HR for $W=40 \times 10^{6}$ is taken as 85,000 feet $^{2} \pm 5 \%$]. This product will estimate the trough to crest wave height at any chosen distance R feet, particularly if the charge is not on the bottom. If the charge is on the bottom then the wave height estimated by this procedure should be reduced by about one-third. . (Multiply by $2 / 3$). If the explosion is in the nonblowout region, one can calculate $H R$ for this case by multiplying 4.8 by $\mathrm{W}^{1 / 2}$. This will estimate H for any given R for a charge in the nonblowout regime on the bottom,. If the charge is not on the bottom the estimate for H should be increased by a factor of 1.5 (multiply by 3/2) .

For the nonblowout case it is also possible to make the estimate without having recourse to previous experimental data, through the use of the Kirkwood and Seeger theory. If the charge is about 2000 lbs. or less, it is possible to express $G_{\tau} 1$ as proportional to T^{1}. From the tables in Kirkwood and Seeger, a
detalled calculation of G_{τ} at the first minimum (trough) and at the next maximum, (crest) on the surface as a function of τ^{1} shows that we can write,

$$
G_{\tau} I_{\min }=\frac{-.48 \tau^{1}}{I^{1}}
$$

and

$$
G_{\tau} 1_{\max }=\frac{ \pm .66 \tau^{1}}{r^{1}}
$$

The trough to crest height is

$$
H=\frac{\bar{V}}{2 \pi h^{2}}\left(-G_{\tau} \tau_{\min }+G_{\tau} l_{\max }\right)=\frac{1.14 \bar{V}}{2 \pi h^{2}} \frac{\tau^{1}}{I^{2}} f t .
$$

or

$$
H=\frac{1.0}{h^{3 / 2}} \frac{\tau}{r} f t .
$$

EOr much larger charges the value of G approaches maximum which is shown by the extremes plotted in Figure i9. These values should be used in the previous expression for H.

In general it may be said that the phenomena are complex, and that the theory which deals with most of the cases is also complex and difficult to apply in a simple manner. predicted durations of positive or negative phases are awkward to make but quite accurately reflect the observations. Amplitudes on the other hand are subject to uncertainty because of bottom interference. Estimates however can be made with some confidence within a factor of two using ab initio Kirkwood and Seeger calculations for the nonblowout case (spherical volume) and for the blowout cases (cylindrical volume).

6. Correction Factor

Let the ratio of the calculated value of amplitude to the observed value at a distance, computed by the Kirkwood and Seeger theory, be called a correction factor. This factor becomes larger as more of the explosive energy blows out. In Figure 22 we have plotted the correction factor against D / L, where D is the depth of the charge. In all cases except Baker itself the charge was actually on the bottom. The numbers have been taken from Table 8 and elsewhere in this report. The curve may be used to adjust calculated values to values that would be expected to be observed. "Calculated" here means using the original spherical volume formula

for all depths. The dotted line in the graph for the blowout region has been adjusted for the smaller cylindrical volume. If a charge at deptn D is not on the bottom, then the expectation is that the waves will be bigger than if it were on the bottom. The theory would restore the troublesome factor of two in this case. Unfortunately, we do not have enough data with charges off the bottom to establish what will happen.

7. Estimate for Critical Depth Case for a Large Explosion

It is, however, possible to use the thcory to make reasonable estimates in nonblowout cases. As an example, suppose one wished to calculate the height of the second crest when 1 megaton is exploded at critical depth for wave making. Such a depth may be seen from Figure 15 to be $a_{\max }=1400$ feet. If we have $L=h=a_{\text {max }}$, then $\rho_{2 \max }=.1606 a_{\max } G_{2 \max }$ ft or $\rho_{2 \max }=223 \mathrm{G}_{2 \max }$ feet (charge on bottom).

From Figure 19 we can construct the following:

$r^{\prime}=$	5	10	15	25	50	500
$G_{2 \text { max }}=$.1156	.0694	.0497	.0318	.0169	2.0019
Calculated						
height,						
$\rho_{2 \text { max }}=$	25.8 ft	15.5	13.3	7.1	3.76	0.42

r	$=$	7000 ft	14,000	21,000	35,000	70.000	700,000
r	$=$	1.17	2.33	3.5	5.8	11.7	116.5
nautical							
miles							

According to Figure 22 these calculated heights are about twice what would be observed.

If water depth is greater than the charge depth, say $>2 a_{\text {max }}$ then the factor of 2 in the bubble volume should be restored. However, the values of G are approximately doubled (for half the values of $\left.r^{\prime}\right)$, and the doubled depth requires division by four. consequently, the waves should be about the same height at the same distance whether the charge is halfway down or on the bottom, as long as its depth is the same neglecting additional energy absorption by the bottom. The theory predicts that the first crest is 3 to 25% lower than the second crest as distance increases. The available data on the first crest are insufficient to confirm or deny this prediction. We shall therefore take the second crest as the largest predicted crest. Figure 22 shows that for critical depth the spherical theory overestimates by a factor of about 2.0. Hence the wave height at say 14,000 feet should be $\frac{15.5}{2.0} \times 2$ (trough to crest) or 15.5 feet. This gives $H R=15.5 \times 14,000=218,000$ feet 2 which is only 2.5 times the value of the corresponding product for Baker. However, if a megaton were placed at a depth of 2 charge radii in water 4 radii deep, then we would have a situation exactly scaled to

Baker with 50 times the charge weight. The water depth would be 660 feet, and the HR product mould ba $85,000 \times \sqrt{50}$ or 600,000 . We then predict that at a given distance the wave height (trough to crest) would be 7 times that observed at Baker and in fact nearly 3 times (2.8) higher than the same charge would produce if placed at the "critical" depth of 1400 feet.

By arguments of this sort one can estimate the wave effects from large explosions. It is hoped that the estimate will remain academic!

8. Ocean Impact of an Asteroid

If a spherical asteroid of radius of say 100 feet were to crash into the deep ocean, what sort of wave disturbance would be created? There would, of course, be a huge splash followed by the formation of a water crater and thereafter the production of surface waves. Consider that the kinetic energy of the asteroid on impact may be treated as the explosion of a weight of explosive (TNT) at rest having the same energy, For example, an asteroid of radius 100 feet, specific gravity 5, and impact velocity of 7 miles/sec would have $2.8 \times 10^{16} \mathrm{ft} / \mathrm{lbs}$ of kinetic energy. This can be equated to $1.9 \times 10^{10} \mathrm{lbs}$ of explosive, (1.48 $\times 10^{6} \mathrm{ft} / \mathrm{lbs}$ per lb of explosive) or very close to 10 megators. The critical depth for such an explosion is 2500 feet (Figure 15). The charge radius would be 362 feet. The chief uncertainty is at what depth the energy could be case would be to assume a Baker geometry. Hence the water depth will be presumed to be at least 4 charge radii (to match Baker) or greater than say 1500 feet deep. An estimate of the waves may then be made by setting,

$$
H R=85,000\left(\frac{1.9 \times 10^{10}}{4 \times 10^{7}}\right)^{1 / 2}=1.85 \times 10^{6} \mathrm{ft}^{2} .
$$

If R is in nautical miles, H in feet we have

$$
H R=307 .
$$

This also says that if a 10 megaton event were to occur, in water 1500 feet deep the trough to crest wave height at a distance of ten miles would be 31 feet in water of uniform depth. If such a wave were to impinge on a beach or shore line, the resulting breaking wave could be as much as 2 or even 3 times aigher depending on the bottom contour. If the water were shallo enough so that there were no dispersion, then the waves would Eall off as $\frac{1}{\sqrt{R}}$ rather than as $\frac{1}{\mathrm{R}}$, and hence would be 408 higher at twice the distance. In other words, if the waves got out to 10 miles at a height of 31 feet, they
could arrive at 20 miles at height of 21 feet rather than 15.5 feet. The impact of a 10 megaton equivalent asteroid would have-a rather local effect as far as waves are concerned on a global scale. The trough to crest height would probably be less than ten feet at 40 miles from impact point.

1. Thorade, H., "Probleme der Wasserwelien," Henri Grand, Hamburg 1931, Corrected Translation by Beach Erosion Board reproduced (J. R. Davis, Jr.) as NOLM 5310, ApriI, 1944.
2. Landau and Lifshitz, "Fluid Mechanics," Section 12, Pergamon Fress 1959.
3. Cauchy 1815, "Memoire sur la Theorie des Ondes," Mem. de l'Acad. Roy. des Sciences, Paris.
4. Poisson 1816, "Memoire sur la Theorie des Ondes," Mem. de 1'Acad. Roy. des Sciences, Paris.
5. Penney, W. G., "Gravity Waves Produced by Surface and Underwater Explosions," March 1945, Underwater Explosion Research, Vol. II, pp. 679-693.
6. Kirkwood, J. G. and Seeger, R. J., "Surface Waves from an Underwater Explosion," Journal of Applied Physics, Vol. 19, pp. 346-360, April 1948. Also (6a), the same paper in Underwater Explosion Research* Vol. II, "The Gas Globe," pp. 707-760, containing tables of the functions $G_{o}\left(r^{\prime}, 0, t^{\prime}\right)$ (bottom) and $G_{0}\left(r^{\prime}, 1, t^{\prime}\right)$ (surface) vs. reduced time for selected values of r'. These integrals had been computed by the Mathematics Tables Project under the Applied Mathematics Panel of the National Defense Research Cormittee by G. Blanch and A, N. Lowan.
*A Compendium of British and American Reports published in 1950 by ONR; Editors, G. K. Hartmann and E. G. Hill.
7. Coulson, C. A., "Waves, a mathematical account of the common types of wave motion," Oliver and Boyd Led, 1941.
8. Lamb, H., "Hydrodynamics," 6th revised edition 1932 New York, Dover Publications, 1945.
9. Spitzer, R. W., "Production of Surface Waves by Underwater Explosion," (Distributed and Lumped Charges) UERL draft 29 Nov 1944. WHOI
10. Charlesworth, G., "Surface Waves Produced by Firing Underwater 3.?-1b. charges of Polar Ammon. Gelignite at Various Depths," UER Vol. II, pp. 695-700.
11. Bryant, A. R., "Surface Waves Produced by Underwater Explosion - Comparison of the Theory of W. G. Penney with Experimental Results for a 32-1b charge." UER Vol. II, pp. 701-706.
12. Shjffman, M. and Friedman, B., "Studies on the Gas Bubble Resulting from Underwater Explosions," Underwater Explosion Research Vol. II, pp. 245-320.
13. Stoker, J. J., "Water Waves," p. 337, Interscience Publishers, Inc., New York, 1957.
14. Focke, A. B., Naval Electronics Laboratory, San Diego, Field Communication (1946).
15. O'Brien, M. P., University of California, Field Communication (1946).
16. "The Fffects of Atomic Weapons" June 1950. U.S. Govt. Printing Office, Washington, 25, D.C.

Gravity waves in cylindrical coordinates, The argument is reproduced here because it is difficult to find in one place. Assume cylindrical symmetry. $\nabla^{2} \phi=0$, where $\phi=$ velocity potential
or

$$
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial \alpha^{2}}=0
$$

Assume separation of variables,
then $\phi=R Z$

$$
\phi=J_{0}(k r)\left(A e^{k z}+B e^{-k z}\right)
$$

Chose origin in rigid bottom. Depth of water $=h$.

Boundary conditions:

At the bottom, (1) $\left(\frac{\partial \phi}{\partial z}\right)_{z=0}=0$

$$
\frac{p-p_{a}}{\rho}=\frac{\partial \phi}{\partial t}-g(z-h)
$$

This equation comes from integrating Euler's equation of motion.

At the surface, (2) $\left(\frac{\partial^{2} \phi}{\partial t^{2}}+g \frac{\partial \phi}{\partial z}\right)_{z=h}=0$, i.e., pressure at surface is constant.

The first boundary condition requires $A=B$.

$$
\text { Hence } \phi(r, z)=A_{\perp} J_{0}(k r) \cosh k z, \text { where } A_{1}=2 A \text {. }
$$

$\operatorname{Try} \phi(r, z, t)=A_{1} J_{o}(k r) \cosh k z \cos \omega t$; where $\omega=\frac{2 \pi V}{\lambda}$

Then second boundary condition gives

$$
\omega^{2}=\mathrm{gk} \tanh k h
$$

$\left[\begin{array}{l}\left.\text { to interpret } k \text {, note that if } k h \text { is small, we have } \omega^{2}=g k^{2} h\right] \\ \text { or }\left(\frac{2 \pi}{\lambda} \mathrm{~V}\right)^{2}=g \mathrm{k}^{2} \mathrm{~h} \\ \mathrm{k}=\frac{2 \pi}{\lambda} \text { if } \mathrm{v}^{2}=\mathrm{gh} \text { as is known for shallow water waves. }\end{array}\right.$

$$
\frac{\partial \zeta}{\partial t}=-\frac{\partial \phi}{\partial z}=-A_{1} k J_{0}(k r) \sin k k z \cos \omega t
$$

$$
\text { or } \zeta=-A_{1} \frac{k J_{0}(k r)}{\omega} \sinh k z \sin \omega t
$$

at $\zeta=n$, (Surface amplitude) $z=h$,
$\therefore \eta=-A_{1} \frac{k J_{O}(k r)}{\omega} \sinh k h \sin \omega t$

From Bernoullis equation,

$$
\frac{p-p_{a}}{\rho}=-\omega A_{1} J_{0}(k r) \cosh k z \sin \omega t-g(z-h) \text {. }
$$

The static pressure at any point z is $p_{0}+\rho g(h-z)$

Hence excess pressure due to waves at any point z is

$$
\frac{\Delta p}{\rho}=-\omega A_{1} J_{0}(k r) \cosh k z \sin \omega t
$$

Combining expressions for Δp and η, we find:

$$
\eta=\frac{\Delta p}{\rho g} \frac{\cosh k h}{\cosh k z}
$$

If we write $|\Delta p|=\frac{\Delta p}{p g}$, i.e., pressure in linear units, η in linear units.

$$
n=|\Delta p| \frac{\cosh k h}{\cosh k z}
$$

If $|\Delta p|$ is measured on the bottom where $z=0$, we have the simple relation, $\eta=|\Delta \mathrm{p}|$ cosh kh which holds for a train of cylindrical or plane waves of wavelength $\lambda=\frac{2 \pi}{k}$.

Energy in surface waves. [Ref. (8), p. 369]

Kinetic + Potential energy per unit area $=\frac{\rho g a^{2}}{2} \mathrm{ft} \mathrm{lb} / \mathrm{ft}^{2}$
where $a=$ surface amplitude; $p=2 \mathrm{slug} / \mathrm{ft}^{3} ; g=32 \mathrm{ft} / \mathrm{sec}^{2}$.

The area covered by this is that covered by the wave whose amplitude is a. It is necessary therefore in computing the total wave energy to know how many waves there are, their wavelengths and their amplitudes. Since we do not have a measurement of the wave pattern everywhere at the same instant, we will take the pattern as it passes a point of observation, namely pole 16 , Shot 4 Solomons. There we find that six major waves went by followed by about six smaller waves. The first positive disturbance arrived at the pole 2140 feet from the explosion after approximately 60 seconds. Hence its average velocity was about the same as the shallow water wave velocity for very long waves ($\sqrt{40 g}=36 \mathrm{ft} / \mathrm{sec})$. We shall assume this velocity in order to estimate the wavelengths.

$$
E / \text { Area }=\frac{2 \times 32}{2} \frac{\mathrm{a}^{2}}{144}=.222 \mathrm{a}^{2} \mathrm{ft} \mathrm{lbs} / \mathrm{ft}^{2}
$$

(a in inches).
Wave energy calculated for Shot 4 Solomons.

Wave number	1	2	3	4	5	6	7	8	9-12
(lst crest is No. 1.)									
Amplitude	3 "	$2^{\prime \prime}$	5.51	5.5"	5.5	5.5	5.5	3.5 "	2.5
(1/2 crest + trough)									
Period (crest to	12 sec	8.0	8.0	7.0	6.7	6.0	6.0	5.7	4.7
crest)									
Wavelength $=36 \times$	430 ft	290	290	250	240	216	216	205	169
Period									
E ftlbs/ft ${ }^{2}=.222 a^{2}$	2.0	. 89	6.66	6.66	6.66	6.66	6.66	2.7	1.39
Area $=2 \pi(2140) \lambda \mathrm{ft}^{2}$	5.77	3.9	3.9	3.36	3.22	2.9	2.9	2.75	2.26
	$x 10^{6}$	x 10^{6}	$\times 10^{6}$	x 100^{6}	$\times 10{ }^{6}$	$\times 10^{6}$	$\times 10^{6}$	$\times 10^{6}$	$\times 10^{6}$
ExAft. lbs $\times 10^{-6}$	11.5	3.5	26.0	22.4	21.5	19.3	19.3	7.5	3.2

Total wave energy in 12 waves $=143.8 \times 10^{6} \mathrm{ftfibs}$

Charge wt of $46,000 \mathrm{lbs}$ has total energy of $46,000 \times 1.48 \times 10^{6}$ $\mathrm{ft} / 1 \mathrm{bs}$. or $68,000 \times 10^{6}$.
.. Total wave energy is approx $\frac{143.8}{68000}=.21 \%$ of total energy.

A similar calculation for Shot 2 at pole $12: 1007 \mathrm{ft}$. from 6700 lbs .

$$
\begin{aligned}
& \begin{array}{lllll}
n & 0 & n & n & n \\
0 & 0 & n \\
0 & -i & 0 & \ddots & 0 \\
0 & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Wavelength } \\
\text { Amplitude }= \\
1 / 2 \text { wave height } \\
\text { Area }= \\
2 \pi(1007) \lambda \\
\frac{E \times A ~}{\mathrm{ft}} \mathrm{Lbs} \mathrm{\times 10}^{-5} \\
.222
\end{array}
\end{aligned}
$$

```
Total wave energy in 10 waves = 571 x 10 5t/lbs x . 222=127 < 10 5
``` ft/lbs.

Total energy is \(6700 \times 1.48 \times 10^{6} \mathrm{ft} / \mathrm{lbs}\).

Fraction in waves \(=\frac{127 \times 10^{5}}{10^{10}}\) or \(.127 \%\) of total energy.
"The Effects of Atomic Weapons" (16), p. 102, finds the wave energy at Baker to be between 0.3 and 0.4 purcent of the nominal (20 kt) energy.

The fraction of the total energy which goes into wave making is so small that it is perhaps not surprising to find large changes in this fraction with small changes in depth. The estimates made here for Solomons' Shots 2 and 4 are not accurate but do indicate the same order of magnitude as found at Baker with a progressively larger fraction of the energy going into waves as the relative depth is diminished.

\section*{Dispersive Medium - Yes \& No?}

If \(\lambda \gg 2 \pi h\), then the velocity of all such waves is equal to gh and this is their maximum velocity. All such wavelengths travel at this same velocity and hence the medium is nondispersive. However, if \(\lambda\) is not \(\gg 2 \pi h\), i.e., if \(\lambda\) is of order of \(2 \pi h\) (or less than \(2 \pi h\)) than the longer waves travel faster than the shorter waves. If wavelength is small or water is deep, then \(V^{2}=\frac{g \lambda}{2 \pi}\) ard medium is dispersive. Consider three successive peaks in a wave system, travelling from left to right in deep water.

If the distance from 1 to 2 is greater than fiom 2 to 3, the peaks 1 and 2 will separate faster than 2 and 3 because the wavelength and kence velocity associated with 1 and 2 are greater than those associated with 2 and 3.

If a set of waves starts out with a large wavelength or separation between the first few peaks, and a small separation between the later peaks, then the first ones should separate from the later ones. If a set of waves all have the same wavelength, then they should travel at the same speed and not show a growing separation. If we start out with a group of different wavelengths, then the longer ones will separate from the shorter ones, provided they all are comparable to \(2 \pi h\) or less. All of these remarks are contained in the expression for wave velocity,
where \(\lambda=\) wavelength, and \(h=\) water depth. This expression holds for plane waves or cylindrically spreading waves, and is a result of the linear wave equation derived from neglecting the square of the particle velocity in the equation of motion. It holds ror wave amplitude small compared with water depth, and assumes that the uFward component of the acceleration of the water particles has a negligible effect on the pressure due to the wave which depends only on the wave amplitude. The expression does hold for the "shallow water" case as well as for the deep water case, i.e. for the nondispersive case and the dispersive case. The expression is in fact the arbiter of the choice.

If \(\frac{2 \pi h}{\lambda}\) is small, then \(\tanh \frac{2 \pi h}{\lambda}-\frac{2 \pi h}{\lambda}\)

Hence \(V=\sqrt{G h}\) Eor \(\lambda\) large compared with \(h\).

If \(\frac{2 \pi h}{\lambda}\) is large, then \(\tanh \frac{2 \pi h}{\lambda}+1\).

Hence \(V=\sqrt{\frac{g \lambda}{2 \pi}}\) for \(h\) large compared with \(\lambda\).

The latter is called the deep water case. The former is called the shallow water case (even when it refers to tides in the ocean).

\section*{NSWC/WOL/MP 76-15}

APPEADIX
\(-\square\)

Maximum and Minimum Values of \(G\) and Durations on the Bottom as a Fen of \(T^{\prime}\), or Table Showing Influence of Bubble Period on Amplitude and Duration.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{T*} & \multicolumn{2}{|l|}{\(\mathrm{G}_{\mathrm{O}_{\mathrm{e}} \mathrm{i}^{\prime}\left(\mathrm{r}^{\prime}, 0, \mathrm{t}^{\prime} \mathrm{m}^{\prime}\right)}\)} & & & \multicolumn{4}{|c|}{Duration \(\mathrm{T}^{\perp}\)} \\
\hline & \multicolumn{2}{|c|}{Maximum} & \multicolumn{2}{|r|}{Minimum} & \multicolumn{2}{|c|}{Maximum} & \multicolumn{2}{|c|}{Minimum} \\
\hline & 1st & 2nd & 15 t & 2nd & 1st & 2nd & 1 st & 2nd \\
\hline & \multicolumn{8}{|c|}{\(\underline{r^{\prime}}=5\)} \\
\hline . 059 & . 0018 & . 0042 & -. 0047 & -. 0025 & 5.05 & 2.90 & 3.82 & 2. 26 \\
\hline . 1 & . 0029 & . 0071 & -. 0079 & -. 0042 & 5.05 & 2.91 & 3.81 & 2.26 \\
\hline . 2 & .0059 & . 0142 & -. 0158 & -. 0084 & 5.05 & 2.90 & 3.87 & 2.26 \\
\hline . 3 & . 0088 & . 0213 & -. 0237 & -. 0125 & 5.15 & 2.90 & 3.82 & 2.29 \\
\hline . 4 & . 0117 & . 0282 & -. 0315 & -. 0165 & 5.26 & 2.90 & 3.75 & 2.28 \\
\hline . 5 & . 0146 & . 0351 & -. 0393 & -. 0205 & 5.25 & 2.90 & 3.81 & 2.28 \\
\hline . 6 & . 0175 & . 0419 & -. 0469 & -. 0244 & 5.30 & 2.91 & 3.81 & 2.27 \\
\hline . 7 & . 0203 & . 0486 & -. 0545 & -. 0281 & 5.34 & 2.91 & 3.82 & 2.28 \\
\hline . 8 & . 0232 & . 0551 & -. 06620 & -. 0318 & 5.39 & 2.91 & 3.82 & 2.28 \\
\hline . 9 & . 0260 & . 0615 & -. 0694 & -. 0.352 & 5.44 & 2.91 & 3.82 & 2.28 \\
\hline 1.0 & . 0288 & . 0676 & -. 0.0766 & -. 0386 & 5.48 & 2.92 & 3.83 & 2.28 \\
\hline 1.1 & . 0315 & . 0736 & -. 0837 & -. 0417 & 5.53 & 2.92 & 3.83 & 2.28 \\
\hline , & .085日 & . 0311 & -. .0988 & -. 0296 & 6.98 & 2.09 & 3.76 & 2.61 \\
\hline \multicolumn{9}{|c|}{\(r^{\prime}=10\)} \\
\hline . 059 & . 0000 & . 0027 & -. 0025 & -. 0021 & 10.35 & 3.37 & 4.48 & 2.73 \\
\hline . 1 & . 0014 & . 0046 & -. 0042 & -. 0036 & 10.35 & 3.37 & 4.48 & 2.74 \\
\hline . 2 & . 0028 & . 0091 & -. 0084 & -. 0071 & 10.41 & 3.37 & 4.47 & 2.79 \\
\hline .3 & . 0042 & . 0136 & -. 0.0125 & .. 0106 & 10.46 & 3.37 & 4.47 & 2.73 \\
\hline . 4 & . 0055 & . 0180 & -. 0166 & -. 0142 & 10.51 & 3.37 & 4.47 & 2.73 \\
\hline . 5 & . 0069 & . 0224 & -. 0.0207 & -. 0175 & 10.56 & 3.37 & 4.47 & 2.73 \\
\hline . 6 & . 00083 & . 0268 & -. 0247 & -. 0209 & 10.60 & 3.37 & 4.48 & 2.73 \\
\hline . 7 & . 0097 & . 0311 & -. 0288 & -. 0242 & 10.65 & 3.37 & 4.48 & 2.72 \\
\hline . 8 & . 0111 & . 0354 & -..0328 & -. 0274 & 10.69 & 3.38 & 4.49 & 2.68 \\
\hline . 9 & . 0124 & . 0396 & -. 0368 & -. 0305 & 10.74 & 3.37 & 4.49 & 2.73 \\
\hline 1.0 & .0137 & . 0437 & -. 0407 & -. 0336 & 10.79 & 3.37 & 4.49 & 2.73 \\
\hline 1.1 & . 0150 & . 0476 & \(=. .0447\) & -. 0365 & 10.83 & 3.37 & 4.50 & 2.73 \\
\hline \(\cdots\) & . 0495 & . 0315 & -. 0645 & -. 0301 & 12.59 & 2.66 & 4.27 & 2.83 \\
\hline \multicolumn{9}{|c|}{\(r^{\prime}=15\)} \\
\hline . 059 & . 0005 & . 0019 & -. 0017 & \(-.0017\) & 15.55 & 3.66 & 4.98 & 3.08 \\
\hline +1 & . 0009 & . 0032 & -. 0028 & -. 0028 & 15.50 & 3.70 & 5.03 & 3.07 \\
\hline . 2 & . 0018 & . 0064 & -. 0055 & -. 0056 & 15.60 & 3.70 & 4.98 & 3.07 \\
\hline .3 & . 0027 & . 0096 & -. 00 13 & -.nna4 & 15.65 & 3.69 & 4.99 & 3.06 \\
\hline . 4 & . 0035 & . 0128 & -. 0.0110 & -. 0.0111 & 15.70 & 3.70 & 4.98 & 3.07 \\
\hline .5 & . 0044 & . 0160 & -.01.37 & -. 0138 & 15.75 & 3.72 & 4.97 & 3.05 \\
\hline .6 & . 00052 & . 0191 & -. 0164 & -. .0164 & 15.79 & 3.72 & 4.98 & 3.06 \\
\hline . 7 & . 0061 & . 0222 & -. 0191 & -. 0190 & 15.84 & 3.71 & 4.99 & 3.05 \\
\hline . 8 & . 0069 & . 0252 & -. 0218 & -. 0216 & 15.89 & 3.72 & 4.98 & 3.06 \\
\hline . 9 & . 0078 & . 0292 & -. 0244 & -. 0241 & 15.93 & 3.73 & 4.98 & 3.06 \\
\hline 1.0 & . 0086 & . 0312 & -. 0271 & -. 0266 & 15,58 & 3.74 & 4.98 & 3.05 \\
\hline 1.1 & . 0095 & . 0340 & & -. 02290 & \[
16.03
\] & 3.74 & 4.98 & \[
3.05
\] \\
\hline co & . 0349 & . 0274 & -. 0484 & .. .0265 & 18.01 & 3.03 & 4.69 & \[
3.09
\] \\
\hline \multicolumn{9}{|c|}{\(\underline{r^{\prime}=25}\)} \\
\hline & & . 0012 & -. 0009 & -. 0011 & 27.70 & 4.25 & 5.84 & 3.54 \\
\hline . 1 . & . 0006 & . 0021 & -. 0016 & -. 0019 & 25.75 & 4.26 & 5.82 & 3.52 \\
\hline . 2 & . 0011 & . 0040 & -. .0932 & -. .0037 & 25.80 & 4.21 & 5.82 & 3.55 \\
\hline . 3 & . 0016 & . 0061 & -. 0048 & -. 0055 & 25.80 & 4.21 & 5.86 & 3.56 \\
\hline . 4 & . 0021 & . 0081 & -. 0063 & -.00:3 & 25.87 & 4.23 & 5.83 & 3.56 \\
\hline . 5 & . 0026 & . 0100 & -. 0079 & . 0090 & 25.90 & 4.22 & 5.86 & 3.56 \\
\hline . 6 & . 0031 & . 0120 & -. 0095 & -. 0108 & 25.95 & 4.22 & 5.86 & 3.55 \\
\hline . 7 & .0036 & . 0139 & -. 01110 & -. 0.0125 & 25.98 & 4.25 & 5.87 & 3.54 \\
\hline .8 & . 0041 & . 0158 & -. 0126 & -. 0142 & 26.03 & 4.24 & 5.87 & 3.55 \\
\hline . 9 & . 0046 & . 0176 & -. 0.0141 & -. 0.0159 & 26.08 & 4.23 & 5.87 & 3.56 \\
\hline 1.0 & . 0050 & . 0195 & -. 0156 & -. 0176 & 26.23 & 4.27 & 5.87 & 3.56 \\
\hline 1.1 & . 0055 & . 0213 & -. 0.0171 & -. -.0192 & 26.13
26.18 & 4.27 & 5.86
5.86 & 3.53
3.56 \\
\hline \(=\) & .0220 & . 0207 & -.0522 & -. 0207 & 28.62 & 3.55 & 5.36 & 3.51 \\
\hline
\end{tabular}

\section*{APPENDIX D (Continued).}

Maximum and Minimum Values of \(G\) and Durations on the Bottom as a Fcn of \(T^{\prime}\), or Table Showing Influence of Bubble Period on Amplitude and Duration.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{\(\tau^{\prime}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{G_{0,1^{\prime}}\left(r^{\prime}, 0, t^{\prime}\right)}{\text { Maximum }}
\]}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Minimum}} & \multicolumn{4}{|c|}{Duration \(\mathrm{T}^{\mathbf{1}}\)} \\
\hline & & & & & \multicolumn{2}{|r|}{Maximum} & \multicolumn{2}{|c|}{Minimum} \\
\hline & Ist & 2nd & 1st & 2nd & 1st & 2nd & 1st & 2nd \\
\hline & \multicolumn{8}{|c|}{\(\underline{I}^{\prime}=50\)} \\
\hline . 059 & . 0001 & .0006 & -. 0004 & -. 0006 & 51.15 & 5.20 & 7.05 & 4.35 \\
\hline .1 & . 0002 & . 0010 & -. 0007 & -. 00010 & 51.20 & 5.10 & 7.05 & 4.35 \\
\hline . 2 & . 0005 & . 0019 & -. 0014 & -. 0019 & 51.25 & 5.20 & 7.02 & 4.29 \\
\hline . 3 & . 0007 & . 0029 & -. 0021 & -. .0029 & 51.30 & 5.20 & 7.03 & 4.32 \\
\hline .4 & . 0009 & . 0038 & -. 0028 & -. .0038 & 51.35 & 5.20 & 7.00 & 4.35 \\
\hline . 5 & . 0011 & . 0047 & -. .0035 & -. .0047 & 51.50 & 5.20 & 6.90 & 4.33 \\
\hline . 6 & . 0013 & . 0056 & -. 0042 & -. 0057 & 51.45 & 5.20 & 7.00 & 4.33 \\
\hline . 7 & . 0015 & . 0066 & -. 0049 & -. 0066 & 51.50 & 5.21 & 7.00 & 4.33 \\
\hline . 8 & . 0017 & . 0075 & -. 0055 & -. 0075 & 51.50 & 5.21 & 7.05 & 4.32 \\
\hline . 9 & . 0019 & . 0084 & -. 0062 & -. 0084 & 51.57 & 5.22 & 7.03 & 4.33 \\
\hline 1.0 & . 0021 & .0093 & -. 0.0069 & -. 0093 & 51.63 & 5.22 & 7.02 & 4.32 \\
\hline 1.1 & . 0023 & . 0102 & -. 0075 & -. 01.02 & 51.65 & 5.23 & 7.05 & 4. 31 \\
\hline \multirow[t]{2}{*}{\(\infty\)} & . 0117 & .0130 & -. 0181 & -. 0132 & 54.61 & 4.40 & 6.53 & 4.25 \\
\hline & \multicolumn{8}{|c|}{\(\mathrm{I}^{\prime}=500\)} \\
\hline . 1 & . 00001 & . 00006 & -. 00004 & & 502.90 & 10.65 & 14.70 & \\
\hline . 2 & . 00002 & . 00012 & -. 00008 & & 503.25 & 10.70 & 14.35 & \\
\hline . 3 & . 00003 & . 00017 & -. 00012 & & 503.23 & 10.70 & 14.40 & \\
\hline . 4 & . 00005 & . 00023 & -. 00016 & & 503.30 & 10.75 & 14.35 & \\
\hline . 5 & . 00006 & . 00029 & \(=.00019\) & & 503.35 & 10.65 & 14.45 & \\
\hline . 6 & . 000007 & . 00035 & -. 00023 & & 503.40 & 10.70 & 14.40 & \\
\hline .7 & . 00008 & . 00040 & -. 00027 & & 503.50 & 10.65 & 14.40 & \\
\hline . 8 & . 00009 & . 00046 & -. 00031 & & 503.60 & 10:70 & 14.30 & \\
\hline . 9 & . 00010 & .00051 & -. 00035 & & 503.65 & 10.65 & 14.35 & \\
\hline 1.0 & . 00011 & . 00057 & -. 00038 & & 503.65 & 10.60 & 14.40 & \\
\hline 1.1 & .00012 & .00063 & - 000042 & & 503.65 & 10.68 & 14.42 & \\
\hline \(\cdots\) & . 00128 & . 00177 & -. 00211 & & 510.18 & & 13.34 & \\
\hline
\end{tabular}

Lockheed Missiles and Space Company 320 Logue Avenue Mountain View, CA 94040 Attn: Dr. William F. Whitmore

Martin Marietta Aerospace
Orlando Division
Post Office Box 5837
Orlando, FL 23805
Attn: Mr. M. E. Dolan
Martin Marietta Aerospace
1800 K Street NW
Washington, DC 20006
Attn: Mr. J. Sullivan
U.S. Naval Institute

Anmapolis, MD 21402
National Academy of Sciences 2101 Constitution Ave NW Washington, DC 20418
Attn: Lee Hunt
National Academy of Sciences Naval Stuaies Board 21st and Fennsylvania Ave
Washington, DC 20418
Director
Naval Eistorical Center
Weshington Navy Yard
Washington, DC 20390
Attn: VADM E. Hooper
VADM Frederick L. Ashworth, USN Sunlit Hills
Route \#3
P.O. Box 90 T

Santa Fe, NM 87501
RADM Alexander S. Goodfellow, USN 409 First Street
Coronado, CA 92118
Dr. William B. Graham
Head, Engineering Sciences Dept.
RAND Corporation
1700 Msin Street
Santa Monica, CA 90406

Dr. William Q. Jeffers
Senior Scientist
McDonnell Douglas
Research Laboratories
P.O. Box 516

St. Louis, MO 63166
Dr. John F. Moore
1121 Denmark Road
Plainfield, N.J. 07062
Mr. John A. Saxten
135 Via Concha
Aptos, CA 95003
Professor Jerome Smith
Associate Professor
Aeronsutical Engineering
Princeton University
Princaton, NJ 08540
Goodyear Aerospace Corporat: on
1210 Massillon Drive
Akron, OH 44315
Attn: W. F. Jennson
Could, Inc.
Advanced Technology Jroup
28901 Euclid Avenue
Cleveland, OH 44117
Attn: T. E. Lynch
Herry Diamond Laboratories
(AMXDO-SAB)
Washington, DC 20438
Attn: M. B. Ginsbere
Honeywell, Inc.
600 N. 2nd Street
Hopkins, MS 55343
Attn: J. O. Voss
I. E. Dupont De Nemours \& Co. Inc.

Wilmington, DE 19898
Attn: L. M. Magner
Lockheed Ocean Laboratory
3380 N . Harbor Drive
San Diego, CA 92101
Attn: PADM L. D. Coates, USN (Ret)

Presegrch, Inc.
8720 Georgia Avenue
Silver Spring, MD 20910
Attn: G. L. Brubaker
T. C. Cox J. R. Penny CAPT D. E. Hinn, USN (Ret)

The Rand Corporation
1700 Ma in Street
Santa Monics, CA 90406
Attn: Dr. M. M. Balaban
J. W. Higgins Dr. J. E. Neufer

Government Plans and Systems Development
RCA Corporation (108-113)
Borton Landing Road \& Marne Highway
Moorestown, NJ 08057
Attn: BGEN F. F. Henderson, USMC (Ret)
Leland Stanford Junior Univergity
Stanford University
7100 Serra Street
Stanford, CA 94305
Attn: Drw D. B. DeBra
Thiokol Chemical Corporation
Elitton Division
E1kton, MD 21921
Attn: 0. D. Reed
TRACOR, Inc.
6500 Tracor Lane
Austin, TX 78721
Attn: D. R. Sanders
TRACOR Marine, Inc.
P.O. Box 13107

Port Everglades, FL 33316
Attn: Dr. M. L. Nollıer
U.S. Steel Corporation

600 Grant Street, Rm 2175
Pittsburgn, PA 15219
Attn: M. A. Burcllo
Commendant
15th Naval District
FFO New York 09580

\section*{Commandant}

Naval District Washington
Weshington Navy Yard
Weshington, DC. 20390
Applied Research Laboratories
The University of Texas at Austin F.O. Box 8029

Austin, TX 78712
Attn: Dr. C. M. McKinney
B. F. Weiss

ARINC Research Corporation
2551 Riva Road
Annapolis, MD 21401
Attn: F. C. Townley
Automation Industries: Inc.
Vitro Laboratories Division
14000 Georgia Avenue
Silver Spring, MD 20910
Attn: CAPT N. B. Atkins, USN (Ret)
Bendix Corporation
Electrodynamics Division
11600 Sherman Way
North Hollywood, CA 91605
Attn: F. Geldert
Bendix Corporation
1730 K Street, NW
Washington: DC 20006
Attn: F. L. Lundquist
Burroughs Corporation
P.O. Box 517

GVL - DS\&SSG
Paoli, PA 19301
Attn: R. M. Tillman
Booz-Allen Applied Research, Inc.
4733 Bethesda Avenue
Bethesda, MA 20014
Attn: C. F. Willard
Edo Corporation
2001 Jefferson Davis Highway
Arlington, VA 22202
Attn: R. N. Flath

General Electric Company
P.O. Box 1122

Farrell Foad Plant, Bldg 1, Rm M8
Syracuse, NY 13201
Attn: F. G. Spann
Commandant Industrial College
of the Armed Forces
Fort Lesley J. McNair
Washington, DC 20315
Officer in Charge
Naval Air Reserve
ASW Tactical School
Naval Air Station Willow Grove, PA 19090

Commanding Officer
Naval Air Regerve Unit
Naval Air Facility
Washington, DC 20390
Commanding Officer
Naval Amphibious School, Little Creek
Naval Amphibious Base
Norfolk, VA 23521
Commanding Officer and Director Atlantic Fleet ASW Tactical School Norfolk, VA 23511

Commanding Officer
Fleet AntimSubmarine Warfare School San Diego, CA 92147

Director Naval Weapons
Engineering Support Activity
Washington Navy Yard
Washington, DC 20390
Cormandant
1st Naval District
495 Summer St.
Boston, MA 02210
Commendant
3rd Naval District
Flushing and Weshington Aves.
Brooklyn, NY 11251
Commandant
4th Naval District
Philadelphia, PA 19112

\section*{Commandant}

Sth Naval District
Norfolk, VA 23511
Commandant
6th Naval District
Naval Base
Charleston, SC 29408
Commandant
8th Naval District
New Orleans, LA 70146
Commandant
Gth Naval District
Building 1
Great Lakes, IL 60088
Commandant
loth Navel District
FPO New Yort 09551
Commandant
llth Naval District
San Diego, CA 92132

\section*{Commandant}

12th Naval District
Treasure Island, Building 1
San Francisco. CA 94130
Commandant
13th Navel District
Seattle, WA 98115
Commandant
I4th Naval District
Box 110
FPO San Francisco 96610
Commender Hawaiian Sea Frontier
Box 110
FPO San Francisco 96610
Commander Western Sea Frontier
Treasure Island
San Francisco, CA 94130
Commander Amphibious Force
U.S. Pacific Fleet

San Diego, CA 92155

\section*{Commander}

Antisubmarine Warfare Force
U.S. Pacific Fleet

FPO San Francisco 96610
Commander
U.S. Naval Forces, Japan FPO Seattle 98752

\section*{Commander}
U.S. Naval Forces, Korea

APO San Franciseo 96301
Deputy Commander Operational Test
and Evaluation Force, Pacific
Naval Air Station, North Ialand
San Diego, CA 92135
Commander Mine Flotilla 3
U.S. Pacific Fleet

FPO San Francisco 96601
Commander Amphibious Group 1
FPO San Francisco 96601
Commander Submarine Squadron 1
FPO San Francisco 96601
Commander Fleet Air Wing 1
FPO Seattle 98768
Commander Fleet Air Wing 2
FPO San Francisco 96601
Commander Fleet Wing 10
FPO San Francibco 96601
Director
Institute for Defense Analyses 400 Army-Navy Drive
Arlington, VA 22202
Chief of Research and Development
Department of the Army
Washington, DC 20315
Commander Army Material Systems
Analysis Agency
Aberdeen Proving Ground, MD 21005

Commander Service Force
U.S. Atlantic Fleet

Norfolk, VA 23511
Commander Submarine Force
U.S. Atlentic Fleet

Norfolk, VA 23511
Commander, Naval Inshore
Warfare Command, Atlantic
Naval Amphibious Base, Little Creek
Norfolk, VA 23521
Commander Submarine
Develupment Group 2, Box 70
Naval Submarine Base, New London Groton, CT 06340

Commanaer Mine Squadron 10
U.S. Atlantic Fleet

FPO New York 09501
Comander Submarine Squadron 4
U.S. Atlantic Fleet

FPO New York 09501
Commander, Nuclear Weapon
Training Group, Pacific
Naval Air Station, North Island
San Diego, CA 92135
Commander
Naval Ship Research and
Development Center
Betinesda, MD 20034
Attn: Undersea Warfare Research and Development Planning Council

Commanding Officer
Naval Ship Research and
Development Center
fnnapolis, \(M D 21402\)
Commander in Chief
U. S. Naval Forces, Europe

FPO New York 09510

Commanding Officer
Naval Coastal Systems Laboratory
Panama City, FL 32401
Attn: G: Gould
Undersea Warfare Research and Development Planning Council

Commanding officer
Naval Torpedo Station
Keyport, WA 98345
Commander
Naval Undersea Center
San Diego, CA 92132
Attn: Undersea Warfare Research and Development Planning Council

Commanding Cfficer
Naval Underwater Systems Center
Newport, RI 02840
Attn: Undersea Warfare Research and Develcpment Planning Council

Cormander
Naval Undersea Center
3202 E. Foothill Boulevard
Pasadena, CA 91107
Commander
Naval Weapons Center
China Lake, CA 93555
Commanding Officer
Saval Weapons Station
Yorktown, VA 23491
Officer in Charge
Navy Tectical Doctrine Activity
Weshington Navy Yard
Washington, DC 23090
Defense Documentation Center
Cameron Station
Alexandria, VA 22314
U.S. Liaison Officer to Supreme Allied Commander, Atlantic
Norfolk, VA 23511
U.S. National Military Representative
Supreme Headquarters
Alifed Powers, Europe
APO New York 09055
Attn: US DOCO
Commander in Chief
U.S. Atlantic Fleet

Norfoik, VA 23511
Commander Second Fleet
Norfolk, VA 23511
Commander Sixth Fleet
FPO New York 09501
Commander Sevench Fleet
FPO San Francisco 96601
Commanding Officer
Fleet Intelligence Center, Atlantic Norfolk, VA 23511

Commandant
National War College
Washington, DC 20305
Commanding Officer, Naval Reserve
Officer Corps Training Unit
University of Kansas
Lawrence, KS 66044
Director of Central Intelligence
Washington, DC 20505
Director
Defense Intelligence Agency
Washington, DC 20301
Commander, Naval Air Development Center, Johnsville
Warminster, PA 18974
Attn: Undersea Warfare Research and Development Planning Council

Commanding Officer
Naval Ammunition Depot
Colts Neck, NJ OTT22
Commanding officer
Navel Ammunition Depot
Hawthorne, NV 89415
Commanding Officer
Naval Ammunition Depot
FPO San Francisco 96612
Commanding officer
Naval Civil Engineering Laboratory
Port Hueneme, CA 93043
Commender
Naval Electronics Laboratory Center
San Diego, CA 92152
Attn: Undersea Warfare Research and Development Planning Council

Commanding Officer
Naval Explosive Ordnance Disposal
Facility
Indian Head, MD 20640
Officer in Charge
Naval Mine Engineering Pacility
Yorktown, VA 23491
Commander
Neval Oceanographic Office
Washington, DC 20390
Atta: Undersea Warfare Research and Development Planning Council

Commanding Officer
Naval Ordnance Station
Louisville, KY 40214
Commanding Officer
Naval Ordnance Systems Support office, Atlantic
Bldg. 62, Morfolk Naval Shipyard
Portsmouth, VA 23709

Director
Naval Research Laboratory
Washington, DC 20375
Attn: Undersea Warfare Research and Development Planning Council

Commander, Naval Sefety Center
Naval Air Station
Norfolk, VA 23511
Commanding Officer
Naval Intelligence Support Center 4301 Suitland Road
Washington, DC 20390
Commander
Naval Ship Engineering Center
Prince George's Center
Hyattsuille, MD 20782
Commander in Chief
DOX, Headquarters SAC
Offutt Air Force Base
Nebraska 68113
Commander
Army Materiel Command
Washington, DC 20315
Commanding General
Army Munitions Comend
Picatinny Arsenal, Bldg 62N
Dover, NJ 07801
Commandant
U.S. Coast Guard

400 Seventh Street, SW
Washington, DC 20591
Commanding General, Marine Corps
Development and Education Command
(Mobility and Support Division)
Quantico, VA 22134
Director
Applied Physics Laboratory
University of Washington
Seattle, WA 98105
Attn: Undersea Warfare Research and Development Planning Council

\section*{Commandant}
U.S. Army Engineer School

Combat and Training Development
Concepts and Studies Division
Fort Belvoir, VA 22060

\section*{Director}

Ordnance Research Laboratory
Pennsylvania State University State College, PA 16801
Attn: Undersea Warfare Research and Development Planning Council

Director
Scripps Institute of Oceanography P.O. Box 1529

La Jolla, CA 92037
Attn: Undersea Warfare Research and Development Planning Council

\section*{Director}

Defense Advanced Research Projects
Agency/THO
1400 Wilson Boulevard
Arlington, VA 22209
Director
Woods Hole Oceanographic Institute
Woods Hole, MA 02543
Attn: Undersea Wartare Research and Development Planning Council

Superintendent, Naval Academy
Annapolis, MD 21402
Superintendent
Naval Postgraducte School
Monterey, CA 93940
Commanding Officer
Naval School Expiosive Ordnance Disposal
Indian Head, MD 20640
Commanding Officer
Fleet and Mine Warfare Training Center
Charleston, SC 29408
Comanding Officer
Haval Training Device Center
Orlando, FL 32813

President
Naval War College
Newport, RI 02840
Director
Defense Research and Engineering
Department of Defense
Washington, DC 20301
Assistant Secretary of Defense (Systems Analysis)
Department of Defense
Washington, DC 20301
Assistant Secretary of the Navy (Research and Development)
Navy Department
Washington, DC 20350
Attn: Dr. Sam Kosloff
Director of Navy Laboratories
Crystal Plaza Bldg. 5
Department of the Nevy
Washington, DC 20390
Dceanographer of the Navy
The Madison Building
732 North Washington Street
Alexandria, VA 22314
Attn: W. H. Hymes
Chief of Naval Operations
Navy Department
Washington, DC 20350
Attn: Mine Desk
Chief of Naval Material
Navy Department
Washington, DC 20350
Project Manager
Mine Warfare Project (PM-13)
Department of the Navy
Washington, DC 20360
Chief of Naval Research
800 North Quincy Street
Arilington, VA 22217
Attin: Chief Scientist (ONR-102)

Cormander
Naval Air Systems Commend
Washington, DC 20360
Attn: AIR-530 ATR-5305A. (L. E. Wheat)

Commander
Naval Electronic Systems Command
Washington, DC 20360
Commander
Naval Sea Systems Command
Washington, DC 20360
SEA-0332 1 SEA-09G32 2
Director and Chief
Center for Navel Analyses
1401 Wilson Boulevard
Arlington, VA 22209
Attn: Dr. J. R. Pipal
Project Manager
Deep Submergence Systens Project
Department of the Navy
6900 Wisconsin Avenue
Chevy Chase, MD 20015
Officer in Charge
Strategic Analysis Support Group
Applied Physics Laboratory
Silver Spring, MD 20910
Director
Strategic Systems Project Office
Washingtion, DC 20390
Library Branch
Technical Information Center
U.S. Armi Ingineer Waterways Experiment Station
Vicksburg, Mississippi 39180
Defense Nuclear Agency
Washington, DC 20305
New York University
360 Lexington Avenue
New York 10017```

